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Section 1 

INTRODUCTION 

A structural engineer is often faced with the need to predict the 

response of structures under failure conditions in attempting to make 

them fail-safe or crashworthy. Under failure conditions the load magni- 

tudes may be large and the structural response may involve large perma- 

nent deformations, rupture and tearing. 

With finite deformations the equations of motion of the structure 

are coupled in products of the derivatives of displacements and stresses: 

the unknowns of the problem. Material yielding may introduce non-linear 

stress-strain relations. Thus, nonlinear transient response prediction 

requires the evaluation of deflections, velocities, accelerations, 

stresses and strains in a structure of complex geometry and ductile 

material under time-varying loads that may cause the members of the 

structure to undergo large motions and deformations and/or respond 

plastically. 

A number of well-known computer codes which can be used for post- 

impact studies of aircraft may be identified [1,2]. They can be classi- 

fied as general or special purpose programs. General purpose programs 

such as MARC and NASTRAN'include some of the capabilities necessary for 

crash simulations. Special purpose programs such as the present computer 

program ACTION, provide in addition special modeling and evaluation 

processes which are particularly useful for crash. Because special purpose 

programs focus on a particular problem class, they are potentially more 

efficient for that class, and presumably require less computer resources, 

and are more manageable. 

In the partitioned spectrum of crash simulators defined by McIvor, 

'NASTRAN: Registered trademark of the National Aeronautics andspace Administration. 



[l], ACTION qualifies as a level four code: providing the capability to 

represent the material and geometric nonlinear transient behavior of a 

structure composed of truss, frame and membrane elements. In com- 

parison with other level four simulators, ACTION offers the following 

unique features: 

1. The ability to automatically control time discretization error. 

2. Representation of impact with a rigid barrier including treat- 

ment of gapping and friction effects. 

3. Logic specifically designed to minimize data transfers by keep- 

ing all working data in core and providing an analysis mode which avoids 

generation of large stiffness matrices in explicit form. 

4. Response data defining the allocation of stored and dissipated 

energies. 

The ACTION code, although quite suitable for nonlinear static 

analysis is primarily designed for analyzing response of vehicles crash- 

ing into a rigid or a deformable barrier. The objective is to predict 

analytically the response of a lightweight aircraft during a crash. The 

simulation is based on a discretized model of the structure using finite 

elements which may undergo finite motions and deformations and may 

respond plastically. A transient analysis of such a model then yields 

the displacements, velocities, accelerations, internal loads and 

stresses, at points of interest, under time varying loads that may cause 

complete failure of the structure. 

The objective of such a nonlinear transient analysis is to develop 

an understanding of the multi-faceted relationship between the complex 

structural configuration of an aircraft and its response during crash. 

Such an understanding can provide the basis for crashworthy design of 
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lightweight aircraft, better restraint systems and efficient energy 

absorption devices which will reduce passenger trauma. 

This report outlines the theoretical basis for the ACTION computer 

code. Instructions for the preparation of input and the interpretation 

of results can be found in reference [3]. 
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Section 2 

FORMULATION OF ACTION 

This section describes the basis and highlights the intricacies of 

nonlinear transient analysis of a structure. Because of the complexity 

of structural geometry and response it is necessary to construct an 

approximate mathematical model. The objective is to predict the dis- 

placements, velocities, accelerations, internal loads and stresses at 

points of interest under time-varying loads that may cause complete 

failure of the structural model. 

The mathematical model is a finite element displacement model. 

Simulation consists of discretizing the actual structure by finite ele- 

ments, approximating the response of each element by a finite number of 

deformation states expressed as linear functions of generalized joint 

displacements and analyzing the mathematical model numerically. 

Most researchers prefer to use a step-by-step incrementally linear 

approach for the solution of the nonlinear equations of the finite ele- 

ment model. In this process, sometimes referred to as the vector ao- 

Droach, the load is applied in increments which are sufficiently small 

so that a linear analysis will approximately represent the structural 

response for in increment. An iterative technique at constant load is 

used to satisfy equilibrium exactly for the partial load. The deformed 

geometry and stress state for a partial load is used as the initial 

state for the next load increment. Turner et al.[4], in their pioneer- 

ing paper, provide a description of the process for finite deflection 

analysis by the step-by-step technique. Martin [5] provides some illus- 

trations. Oden [6] and Hibbitt et a1.[7] show applications to problems 

involving large strains and finite displacements. A comprehensive re- 
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view of the many abberations of the incremental method for geometrically 

nonlinear problems is provided by Haisler et al [8]. Armen et al.[9], 

[lo] Belytschko [ll], [12] generalize the step-by-step process to pro- 

blems involving both geometric and material nonlinearities. The work 

of these authors represents the many applications of the step-by-step 

approach that may be found in the literature. 

ACTION represents the structural characteristics by a scalar func- 

tion. The equilibrium configuration is established based on derivatives 

of the function. This approach, sometimes referred to as the scalar ap- 

proach, has been successfully used in nonlinear structural analysis by 

Bogner et al.[l3]. Mallet and Berke [14] show results of applying the 

process to truss structures. For transient analysis the formulation 

couples a step-by-step numerical integration in time with the function 

minimization procedure. Discrete steps are taken in the time co-ordinate 

and function minimization is used at each discrete time point to find 

the solution. Young [15] was probably the first to illustrate the use 

of this approach for nonlinear transient response simulation. 

The approach consists briefly of the following steps: 

1. Assume suitable element displacement field as a function of 

the local spatial co-ordinates with generalized joint dis- 

placements as unknown coefficients. 

2. Relate the element generalized displacements to global gen- 

eralized displacements of the system accounting for pre- 

scribed boundary conditions. 

3. Develop expressions for strains in each element as functions 

of the global generalized displacements. (These expressions 

will account for nonlinearities in the derivatives of the dis- 

placement field.) 
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4. Determine the corresponding stresses and strain energy den- 

sities in each of the elements of the assemblage using respec- 

tive material models. 

5. Integrate the strain energy density over the volume of each 

element to yield element strain energy as a function of the 

global generalized displacements. 

6. For transient analysis, knowing the values of the generalized 

displacements, velocities, accelerations, etc., at time t 

extrapolate assuming displacements vary as prescribed func- 

tions of time. 

7. Determine by energy minimization, the configuration which im- 

plies satisfaction of equilibrium at the end of the next (load) 

time increment. 

The simulation provides accurate results for static analysis with 

linear material behavior. For transient analysis with inelastic material 

behavior several factors limit the accuracy: 

1. Because of the assumed displacement-time relations for the 

response the approximation does not accurately describe the 

response for large time steps. Depending upon the type of the 

temporal integration scheme used, there is a possibility of 

divergence of the solution from the true solution as time steps 

accumulate. 

2. For inelastic stresses, the evaluation of the strain energy 

may be in error for certain deformation states due to approxi- 

mations in integration. This error may be reduced by modeling 

the affected element with a number of smaller elements. 

3. Because of discretization of the actual structure by an assemb- 
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lage of kinematically admissible finite elements, in general, 

the calculated solution can be expected to be in error from 

the true solution for the actual structure due to large geo- 

metry changes of particular elements. This error can also be 

reduced by modeling the given structure with more elements. 

4. The inelastic material representation may be inadequate in some 

cases because the constitutive equations of ACTION are rather 

simple idealizations of true behavior. 
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Section 3 

DEFORMATION MODEL 

The deformation model is a mathematical model which characterizes 

the deformation of the structure in terms of unknown variables. The 

model is synthesized from deformation states of each element of the 

structure. These deformations are expressed in terms of displacements 

of "joints" of the system, points at which the elements interface. 

The displacement field within each element is chosen as a continu- 

ously differentiable function of the local spatial co-ordinates and the 

joint displacements. The field maintains interelement continuity of the 

essential derivatives and includes constant strain states so that the 

representation provides a Galerkin model of the system. The generalized 

joint displacements of each element are related to the global displace- 

ments of the assemblage of the elements. These relations, which can be 

interpreted as transformations of the local generalized displacements, 

may be linear or nonlinear depending upon whether the motions and defor- 

mations of the elements are infinitesimally small or finite. For large 

angular changes, these transformations are accomplished using Euler 

angles which are linearly independent by virtue of the fact that the 

rotations are performed in a prescribed order. 

The remainder of this section formulates the deformation character- 

istics of each type of element used in the ACTION simulator and the 

transformations to relate element behavior to the common rectangular 

Cartesian coordinate system. 

3.1 TRUSS ELEMENT [15] 

A truss or a rod element is a structural component of uniform cross- 
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section which is initially straight. It is assumed that the element is 

capable of resisting only axial deformation imposed by joint displace- 

ments through momentless connections. Using a linear interpolation 

function for the axial displacement, closed form expressions for stresses 

and strain energy for the linear elastic range are developed. For the 

inelastic range development of the expression for the strain energy 

involves the use of the material model of the element. 

3.1.1 Deformation 

Figure 3-l shows the initial and deformed positions of a typical 

truss element specified by the co-ordinates of the two joints, p and q, 

which it connects. These co-ordinates are defined with respect to a 

fixed global system of reference axes X, Y and Z. x and y denote the 

local co-ordinates axes corresponding to the deformed nodal configura- 

tion. Motion of the element is defined by finite displacement vectors 

U and s of the two joints. 
-P 

The components of the displacement vector 

U in the X, Y, Z co-ordinate directions are denoted by U, V and W re- - 

spectively. Element deformations are denoted by an axial displacement 

function u(x). It is convenient to express the element strains with 

reference to the deformed nodal configuration, finite nodal displace- 

ments being accounted for in the transformation from global to the local 

displacements. 

From Fig. 3-l the initial length, L, of the element is given by 

L = [(X 
q 

- Xp)2 + (Y 
q 

- Yp)2 + (Z - z 
4 P 

)2]1J2 (3-l) 

The deformed length, L, is given by 

L = [(Xq + u - x - Up)Z + (Yq + v - Y -z 
4 P 9 P 

-vpj2+ czq+w 
q P 

- w )2]1/2 
P (3-2) 

Hence, the change in length, DL, is given by 
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Fig. 3-l Geometry and Deformation of the Truss Element, 

10 



DL = L[l + 2(AxALJ + AYAV + AzAw) 
72 

+ AU2 + Av2 + Aw2]l/2 
-2 

- L (3-3) 

where A is the difference operator for q and p end values. 

Equation (3-3) gives the change in length for joint displacements 

of any magnitude. The quantity inside the brackets in Eq. (3-3) should 

be positive but due to manipulation errors, values less than zero may be 

realized. Then DL is assumed to be -L: the maximum value physically 

possible. For values of the quantity inside the brackets close to one, 

DL is evaluated by using a binomial expansion. 

Next, the assumption of the usual linear 

the corotational co-ordinate system yields 

6u = x(5, 

whence 

E = (J+, 

&I being the relative displacement of the end q relative to the end p 

interpolation function in 

(3-4) 

(3-5) 

in the corotational system and E being the strain. 

3.2 FRAME ELEMENT [15] 

A frame element is a structural component which is initially 

straight and which undergoes axial, bending and torsional deformations 

resulting from finite displacements and rotations of its ends. A frame 

element of general cross-section resists loads mainly by three types of 

stresses namely ox, T and T 
xy xz' For such a frame element, a general 

treatment of shear deformations is quite complex hence only thin-walled 

cross-section frame elements, wherein the plastic strain energy due to 

shear deformations can be ignored, are implemented in ACTION. 

For the linear elastic case a closed form expression for the elas- 

tic strain energy density is developed. 

11 
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For the inelastic case, however, the calculation of the elastic portion 

of the total strain energy density is based on the shear flow theory 

for beams with thin-walled cross-section and the incremental dissipa- 

tive strain energy density U$ is assumed to be that due to the effects 

of normal stress and strain alone. 

3.2.1 Geometry of Deformation of a Frame Element 

Figure 3-2 shows the initial position, of a typical frame element, 

specified by the co-ordinates of its end points (the p ane q joints it 

connects) with respect to a fixed system of global axes X, Y and Z. Roll 

orientation is specified by the angle between a reference axis of the 

cross-section and the plane formed by the member and its projection in 

the XY plane. This angle is denoted by y. (If the member is parallel 

to the Z axis, y is measured from the X axis.) 

The longitudinal axis of the element and two reference axes of the 

cross-section form member axes x 1, yl and zl- A vector, IV], known in 

the global co-ordinate system can be described with respect to the member 

co-ordinate system as vector {Vl] given by 

{Vl] = [Tl]{V] (3-h) 

where [Tl] is an orthogonal transformation matrix with the property 

[TllTITll = [II (3-7) 

where [I] is the identity matrix. Premultiplication of both sides of 

Eq. (3-6) thus yields 

IV) = [TllT {V,) (3-B) 

The transformation matrix, [Tl], which describes large angular 

rotations from global axes X, Y, Z to axes x1, yl, z1 are given by 

[16] as 
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Fig. 3-2 Initial Orientation of the Frame Element. 
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cysz -S 
Y 

[Tll = cxcz + s s s s c 
XYZ XY 

I 

O-9) 

-s c xz 
+css cc 

XYZ XY 

where c i = cosQi and si = sin$i for i = x, y, z. h+=s 4,, 4,, 4z 

are defined in Fig. 3-2 and the rotations have been performed in the 

order 4,, 4 Y 
and $x. From this figure it can be deduced that 

cosax = cosy sin$x = siny 

Y 
sin$z = q - yP 

R 

where 

Motion of the frame element is characterized as the superposition 

of a rigid body motion and deformations. There is no limit on the size 

of the rigid-body motion; however, the deformations are assumed to be 

small. Motion of the frame element is a function of the three transla- 

tional displacements and the three rotational displacements of the two 

joints which the member connects. 

To define joint displacements and rotations a set of joint axes, at 

the joint p which are initially parallel to the global axes X, Y, Z, 

are introduced. The joint displacements are denoted by the vector u 

which has components U, V and W in the X, Y and Z directions respectively. 

The rotations of the joint p, Ox, 8 , Bz, 
Y 

are about the joint axes which 

are initially parallel to the global axes. Motion of the element is, 

thus, separated into two parts: a rigid-body motion which is described 

by the displacements and rotations of joint p, and a deformation which is 

14 



described by the motion of joint q relative to joint p. 

Initially the joint axes are situated parallel to the global axes 

with the origin at joint p. The rigid body motion translates and rotates 

the joint axes to the position x', y', z' as shown in Fig. (3-3). The 

translation is given by the vector U 
--P 

and the rotation is described by 

the transformation [T ] which relates vectors in global system to vec- 
2P 

tors inthe displaced x', y', z' position of the joint axes, 

{V'] = [T21p{Vl] (3-10) 

The transformation [T ] 
2P 

is identical in form to [Tl] of Eq. (3-6) ex- 

cept that the angles 8 8 8 
xp' YP' zP 

are used in place of Q,, Q,, Qz. 

The rotations must be specified in the order 8 6 8 
ZP' YP' xP 

to be able 

to use a form for [T2] similar to [Tl]. The member axes remain fixed 

with respect to the joint axes. Rigid-body motion carries the joint 

axes from their initial position parallel to the global axes) to the 

position x', y', 2'. Likewise, the member axes x1, yl, z1 become axes 

x2' Y.2' 2.2 after the rigid-body motion. However, the new member axes 

X2' Y.2' 2.2 are oriented exactly in the same manner with respect to the 

joint axes x', y', z' as were the member axes x 1' Yl' z1 with respect 

to the global axes. Hence, any vector {V2} described with respect to 

the new member axes x2, y2, z2 is related to the vector IV'] described 

with respect to the x', y', z' axes by the relation 

IV,] = [Tl]{V'] (3-11) 

Accordingly, use of Eq. (3-9) yields 

iv,) = [Tll [T21p{V11 

or 

&,I = [T31phl} (3-12) 

where 
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Fig. 3-3 Finite Motion of the Frame Element. 
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[T3]p = &I [T21p (3-13) 

Since, both [Tl] and [T21p are orthogonal transformations, their pro- 

duct is also an orthogonal transformation i.e. 

[T31;[T31p = [II 

Thus, vectors specified in the global axes can be expressed in the de- 

formation axes (member axes after rigid body motion) x2, y2, z2 by the 

relation 

$1 = LT3];{V2} (3-14) 

To describe the deformation of the element, the displacements of 

the joint 

From Fig. 

rxu = 
- 

= 

q need be expressed with respect to the deformation axes. 

3-3 it follows 

R +U 
3 3 

-L-U -R 
P-p 

where 6u is a vector described with respect to the deformation axes. - 

Use of Eq. (3-12) then yields 

(3-15) 

where 6u, bv, 6w are the displacements of joint q relative to joint p 

along x2' y2' z2 axes regpectively; X, Y, Z are the co-ordinates 

V, W the translational displacements of the joints measured with 

to the global axes. 

For numerical calculations, the arrangement of terms in Eq. 

and U, 

respect 

(3-15) 

is poor, requiring the differencing of nearly equal numbers. Since 
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The terms are rearranged to: 

(3-16) 

where [T ] = [T ] - [I] 
4P 2P 

(3-17) 

and A is a difference operator for q and p end values in the global 

axes. After manipulation of the trigonometric terms in [T 2 p' [T4]p ] 

may be expressed as 

-2(S2 c2 +c2 s2 

[T41p = 

i 

y2 22 y2 22 ) cs -s 
YZ Y 

-cxsz+s s c -2(s;2c;2+c;2s;2)+s s s s c 
XY z XYZ XY 1 (3-18) 

L sxsz+c s c 
XYZ 

.sxcz+c s s 
XYZ -2csf2c;2+c~2s;2) 

1 
P 

where the subscript "2" denotes one-half of the indicated angle, the 

angles involved being 8 0 
xp' YP 

and 9 
ZP' 

To complete the description of the deformation, expressions for rota- 

tion of joint q with respect to the deformation axes are required. In 

the development of these expressions, the rotations of each joint are 

permitted to be large but the differences between the rotations defined 

AOx= -0 A8 =9 -0 
xq xp' Y Y4 YP) 

Aez = 8 - 9 
zq ZP' 

are assumed to be small, so that cosA8zl and sinAeEA8. The intent is 

to permit large rigid body motion of the element but limit the defor- 

mation of the element to small rotations. With this restriction, the 

relative rotations $,, $ 
Y and '4, of the joint q with respect to the 

deformation axes are similarly given by 

= [Tll [T21p (3-19) 
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Equations (3-19) have been obtained based on the fact that infinitesimal 

rotations can be treated as a vector. 

Thus, deformation of the frame element is specified by the rela- 

tive displacements and rotations of joint q with respect to joint p. 

The relative displacements &L, bv, 6w are given by Eqs. (3-16) and the 

small rotations qx, Q,, 9, are given by Eqs. (3-19). These equations 

contain large angle transformations which entail considerable calcula- 

tion effort. For problems with small joint displacements and rotations, 

approximate transformations may be' employed with considerable savings 

in calculations. This is achieved by replacing the trigonometric func- 

tions by their power series expansion and retaining only terms of the 

second-order. The resulting approximation is given by: 

= [T1 

i 

- $0; + El;, 

1 - flz + 8 0 
XY 

By+88 xz 
L 

18 - 
Z 

By' 

+ [ -8 i 9 z X 

8 -8 1 
Y x 

J P 

(3-20a) 

(3-20b 

If all second-order terms are neglected in the above expressions, the 

linear deformation equations are obtained 
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(3-21a) 

(3-21b) 

These results may be used for problems where the displacements and rota- 

tions are small (i.e., (rotations) 2 << order (relative joint displace- 

ments)). If non-linear deformation effects are to be represented as in 

the case of buckling problems, the second-order approximation must be 

employed. 

The parameters Au, 6v, 6w, $,, $,, $, are the generalized displace- 

ments as seen at the end point q relative to the end point p of the ele- 

ment. Deformation along the length of the element is described by intro- 

ducing displacement functions uo(x), vo(x), we(x) of a longitudinal 

reference axis and the angle of twist Be(x) about the reference axis as 

shown in Fig. 3-4. The x, Y, z axes of Fig. 3-4 are the x2, y2, z2 

axes of Fig. 3-3. The subscript is dropped to simplify the notation in 

the development to follow. 

The displacement functions uo(x), vo(x), we(x) and g,(x) define 

deformations of the reference axis. Displacements of points off the 

reference axis are obtained by making the usual kinematic assumptions 

of the engineering theory of beams under bending and torsion. For the 

sake of simplicity, the equations of equilibrium with bending and tor- 

sional deformations, lateral displacements and twists are referenced 

to a longitudinal axis through the shear center and are denoted by v(x), 

w(x) and b(x) respectively as shown in Fig. 3-4. Based on the results 
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Fig. 3-4 Generalized Displacements of the Frame Element. 
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from strength of materials and elasticity [17] the following expressions 

are assumed for the displacements u*, v*, w* of points off the centroidal 

reference axis: 

dvb (x> 
u*(x) = u(x) - y 7 - 

dwb(x) dvs Cd 
z - + @l(Y,Z) -yy 

dws 64 
dx + @,(Y,d 7 

di3 (xl + $(Y,Z) 7 

v”(x) = Vb (4 + vs (x> -(z-z,) B(x) 

w*(x) = Wb w + w,(x) + (Y-Y,) B(x) 

(3-22) 

The subscripts "b" and "s" indicate lateral displacement due to bending 

and shear and the functions $1, $,, $3 d escribe cross-section warping. 

The total lateral displacement at the shear center is the sum of the 

bending and shear components 

v = Vb +vs , w=wb+w 
S 

(3-23) 

The deformations of the reference axis can be obtained by setting y = 

z = 0 in Eqs. (3-22). It is implicitly assumed in Eqs. (3-22) that lon- 

gitudinal warping is unrestrained and that plane sections remain plane 

during stretching and bending even though the total deformation produces 

nonplanar cross-sections. 

For thin-walled closed cross-sections, the stresses produced by re- 

strained warping are small. The same is not true of a thin-walled open 

section where a deformation model with restrained warping would be de- 

sirable. The assumptions of plane sections remaining plane during bend- 

ing deformations and of plane rotations during torsional deformations 

are quite adequate for inelastic material behavior. However, warping 
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functions become complex functions of the distortion parameters and the 

material properties. The secondary, self-equilibrating stresses due to 

restrained warping, if any, are neglected for elastic and inelastic 

material behavior for sake of convenience. 

3.2.2 Strain-Displacement Relations 

With the assumption of unrestrained warping, the axial strain consis- 

tent with the deformations assumed in Eqs. (3-22) is given by 

E du d2vb d2wb 1 c-w 
X dx y dx2 --z-+7 

dx2 1 (3-24) 

Implicit in the Eq. (3-24) is the assumption that squares of rotations are 

negligible in comparison to unity. Equation (3-24) is adequate for des- 

cribing the initiation of buckling but not adequate for describing post 

buckling behavior. A rigorous treatment of shear distortion based on 

the theory of elasticity is quite involved even for the elastic case. 

Hence, to simplify the treatment of shear distortion, especially for 

the inelastic range, an approximate strength of materials approach is 

used. 

3.2.3 Deformation MO&shapes: Linear-Elastic Material 

Based on the results from engineering beam theory, deformation mode- 

shapes are assumed and axial and shear strains are derived as functions 

of relative joint displacements. The deformation modeshapes describe 

deformation along the length of the member as caused by relative joint 

displacements 6u, dv, 6w, JI,, $,, IJI, defined in Section 3.2.1. Neglect- 

ing shear deformations and assuming unrestrained warping these results 

are 
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- = (3T-12 "b 6V 

L - 2q3) + + (113 - n2)$, 

- = (3r12 "b 6W 

L - 203) + - (113 - Q2)$, 

(3-25 a-d) 

B = w, 

where, 

6v = 6Vb -I- z J, s x’ 6w = 6Wb - y jJ sx (3-25 e,f> 

q = x/L and y z s' s are the co-ordinates of the shear center of 

the cross-section of the beam. 

The stress resultants associated with the deformation shapes of Eqs. (3-25) 

are given by 

du N=EAz 

MZ = EIZ 
d2vb d2wb 
-++I - 
dx2 " dx2 

- MY = E1 

d2vb d2wb 

" dx2 
+EI - 

' dx2 

(3-26 a-d) 

T=GJdB dx 

where, 

A = I dA, Iy = I z2dA, 
A A 

Iz = IAy2dA, Iyz = jAyzdA 

the parameter J is the torsional constant for the cross-section and the 

parameters E and G are the material elastic moduli in tension and shear, 

respectively. Equilibrium of the frame element in Fig. (3-5), gives 

24 



Fig. 3-5 Generalized Forces of the Frame Element. 
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dM 

vY = 
Z 

d3vb d3wb 

- dx = - EIZ dx3 - EIyz dx3 

- EI 
d3vb d3wb 
--EI - 

" dx3 y dx3 

(3-26e,f) 

In the development of Eqs.(3-25), it is assumed that the x-axis or 

the straight line defined by the joints p and q, passes through the 

centroid of the cross-section. Thus, eccentricity between the struc- 

tural joints and the centroidal axis of the element is not represented. 

Note that in Eqs. (3-26) torsion and bending are uncoupled, since twist- 

ing and lateral displacements are referenced to the shear center. 

The effect of shear deformation due to bending is approximated. 

The gross shear distortion of the beam is described by an effective 

shear strain. From the geometry of shear deformation, the shear strain- 

displacement relations are given by 

dv 
S dwS 

Y =- 
SXY dx ' 'sxz = dx 

(3-27a,b) 

where the subscript "s" indicates the shear component of deflection. 

The shear strains produce shear forces based on a gross response de- 

scribed by the expressions 

V AG dvs AG dws z-p++- 
y kY dx kYz dx 

(3-28a) 

(3-28b) 

The constants k k k y= yz' zy' kZ are to be determined so that the gross 

shear model best represents the shear deformation in bending. From 

among the various methods available for the calculation of the shear 

constants the maximum-strain method is the one used in the ACTION simu- 

lator. In this method, the maximum strain at the centroidal plane is 
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assumed to be the effective strain and 

kY = 

(Y, ) y centroid 
(Vy/AG) = [?$$I centroid/('yiAG) = [a] centroid 

kZ = (Yxz)centroid 
(VZ/W 

where Q, and Q are the 
Y 

first moments of area (on either side of the cen- 

troidal axis) about the centroidal axes z and y respectively. These 

= [Z$] centroi7(vz'AG) = [&] ce~~~~~da'") 

constants are easily evaluated and results are found in strength of 

materials books [18] for a variety of common CrOSS-Sections. 

The constants k k k y' yz' zy' kZ must satisfy the reciprocity rela- 

tions 
I 

k 
Y= 

=k,4=k 
yz zy 

= ky 4 (3-29 c,d) 
YZ 

However, if these constants are obtained by the maximum-strain method 

as outlined above, they may not satisfy the reciprocity relations for 

certain cross-sections. 

Next, solving for vs and ws from Eqs. (3-28) with the help of Eqs. 

(3-26 e,f) and (3-29 c,d) gives 

dv 
-2.z 

dx 

EI d3w 
Yb 

z GA dx3 

which have the solutions 

V 6V W 6W 
S -+, 
L 

A=,2 
L L (3-30 a,b) 

where 

6V 

2 = 12x;z [2 - $ Qz] , &Y 12;;;Y [2 + 3 by] (3-30 c,d) L 

Equations (3-30) are simple linear mode shapes that describe the defor- 

mation caused by bending shear. Adding these to the initial mode shapes 
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from Eqs. (3-25) gives 

6V 6V 

- = (3?12 - 2113) + + (l-l3 - r?)l), + rl y + T-l (%) Qx V 

L 
(3-31 a-d) 

6W 6W 
W - = (3112 - 2Q3) + - (113 - n2)Qy + 17 y - rl + a, 
L 

B = NJ, 

where 6v = 6vb + dvs + ($)@,, bw= 6wb+6w 
S 

The deformation modeshapes of Eqs. (3-31) represent a linear defor- 

mation theory. These results may be extended to include the nonlinear 

coupling between axial and lateral deformations. An axial deformation 

of the following form is assumed 

g=K+g2+[g]j 

where K is a constant given by the relation 

(3-32a) 

(3-32b) 

Equation (3-32) replaces the first of Eqs. (3-31). 

Collecting results from Eqs. (3-31), (3-32) the deformation mode 

shapes for the linear elastic frame element are summarized as follows: 

du = KL 
dn -2L l [(%I2 + @‘I 

6V 
V 6vb - = (3172 - 2l73) y- + (l-l3 - r12Nz + n 9 
L 

6W 6W 

Jf = (3n2 - 2lJ3) + - (q3 - n2)$, + Tl + 
L 

B = rl$, (3-33 a-d) 
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where 

6v = 6Vb + 6vs + qx, 6w = 6Wb + 6w - y @ 
S sx (3-33 e,f) 

and K is given by Eq. (3-32b). 

Equations (3-30) and 3-33 e,f) can be solved simultaneously to 

obtain 

ct 

s++ 
Z 

6V b 2 z -= 
- + JI, 6Wb % - 

, -= 
L 1+ci L 1+Ci 

Y Z 

where, 

12k EIZ 
a = 

12kZEI 

Y GAL2 
, 01 = 

Z GAL2 
(3-34a,b) 

The parameters cx and oz 
Y 

are a measure of the relative importance of 

shear deformation. For a lateral displacement imposed at the end of the 

element, c1 is the ratio of shear deformation to bending deformation. 

With the deformation mode shapes defined the constant K of Eq. 

(3-32b) can be evaluated. The expression for K is 

6W 6W 

+$ ($)2 ++o+y +--1qJ2 

6w bw 6W 

15 Y 
++ (++++, (3-35) 

3.2.4 Deformation Mode Shapes: Inelastic Material 

The determination of deformation mode shapes for inelastic action 

in the frame element is not feasible in a general analytical formula- 

tion. For approximate treatment of the inelastic case the elastic 

mode shapes of Eqs. (3-33)are used. For consistency of assumptions, 

however, it can be shown [19] that the linear axial deformation mode- 

shape of Eq. (3-25a) has to be replaced by a quadratic variation of 
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axial displacement u along the length of the element. This is achieved 

by the introduction of an additional node, r, at the center of the frame 

element. Only the axial displacement ur of this node is monitored. 

Thus 

(3-36) 

where 

&I 
1 

=u -u 
If P 

and 6u 
2 

=u -u. 
4 r 

The transformation relation between the global displacement AU1 and 

6U 1 can be shown to be 

fill 1 1 Aul -=- 
L A1 

[L - A2 LIT - A3 y + 2 (A4 + A5 + A6)] (3-37) 

where 

Al = T;; T;l + T;,' T;2 + T;; Ti3 

A2 = T;,' T;l + T;; Tt2 + T;; TG3 

A3 = T;; T;l + T;; T;2 + T;; Tz3 

A4 = (T'l 
4P 

Ax + Tii Ay + T13 Az)T~~ 
4P 

(3-38a-h) 
21 

A5 = (T4p Ax + T;; Ay + T;; Az)T;; 

31 Ax + T A6 = (T4p 2: Ay + Tip3 Az)T~~ 

6v” 6V 
-cm 

L 2' (2, - + $, + 3 -; + + zs$, 

6w* 1 6wb 
L 2 (,) + * I), + + f$ - + y,$J, -=- 

. . 
and T1' k is the i-jth element of the matrixYCk of Section 3.2.1. Equation 
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(3-37) assumes that A 1 is nonzero. If this is not the case, similar 

equations can be derived in terms of AVl or Awl. 

It seems appropriate to remark in passing that this feature of the 

frame element using a quadratic variation for the axial displacement 

field is not necessary for the linear case wherein the deformations 

are referenced with respect to the centroidal axis. However, if used 

with deformations being referenced with respect to the centroidal axes, 

the quadratic variation degenerates to a linear variation. More impor- 

tantly, the feature could be exploited to analyze linear response using 

reference axes which are not coincident with the centroidal axes and/or 

for the purposes of simulating rigid links. Of course, this then implies 

that the strain energy of deformations cannot be computed using the usual 

closed form expression of the linear elastic case but rather be computed 

using numerical integration as in the inelastic case to be described 

in Section 6.4. 

For inelastic response, the relative contributions of bending and 

shear to the total lateral deformations are initially unknown. An 

iterative solution for the magnitude of shear deformation is required. The 

iterative solution is implemented by adjusting the relative contribu- 

tions of bending and shear iteratively until the shear deformation as 

measured by the effective shear strain, converges. The following steps 

are involved: 

1. Initial magnitudes of shear and bending deformation are assumed 

based on the elastic solutions of Eqs. (3-30c,d) and (3-34). 

2. An analysis is performed for the stresses and strains in the 

element. The effective shear strains y sxy' Y sxz are evaluated and Eqs. 

(3-27a,b) and (3-30a,b) are used to obtain new measures of the shear 
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deformation components, 

by a 

(qnew = YsxyL 3 (Gws)new = 'sxzL (3-39a,b) 

3. The new shear deformations are compared to the old, normalized 

measure of the total deformations from Eqs. (3-30c,d). 

1 (‘Vs)new - (6vs)oldl 
lbvb1+16vs1+11/2 JIzLl << 1 

(3-40a,b) 

1 (6Ws)new - (6Ws)old 1 
~6wb~+~6ws~+11/2 $yLI << 1 

If these ratios are sufficiently small (equal to 0.10) the iteration is 

stopped, if not, the iteration is repeated from step "2" with the new 

values of shear deformation. 

Consideration of shear deformation requires a considerable cal- 

culation effort for the inelastic case. Therefore, shear deformation 

should be considered only for those elements where it is judged to be 

of significance. 

3.2.5 Shear Flow Theory: 

Figure 3-6 shows the forces acting on an element of a thin-walled 

frame member. With the usual assumptions of shear flow theory of thin- 

walled members [lS] equilibrium of forces in the longitudinal direction 

yields 

' do 
9 = - 9 - tds + q. 

0 dx 
(3-41) 

where q. is the shear flow at the origin of s. Equation (3-41) gives the 

variation of shear flow around the perimeter and along the length of 

the beam as a function of the longitudinal stress (5. 

Subsequent treatment of shear stress by the shear flow theory varies 

depending upon whether the cross-section is open or closed. For thin- 
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Fig. 3-6 Free Body Diagram of a Thin-walled Section. 
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walled open cross section, the. torsional shear stresses vary while the 

shear stresses due to bending shear are constant across the thickness. 

For thin-walled closed sections the torsional and bending stresses are 

constant across the wall thickness hence both are described by the shear 

flow theory. Thus, in the case of the IE section element (a thin-walled 

open section) the shear stresses due to torsion are neglected both for 

the elastic and inelastic cases, although for the elastic case the 

strain energy due to torsion is accounted for. In this regard the 

treatment of the IE section element is inconsistent. 

For closed cross-sections, Eq. (3-41) describes the change in q 

around the perimeter. The integration constant q. in Eq. (3-41) is 

selected so that the shear strain, when integrated around the perimeter 

gives the prescribed twist i.e. 

yds (3-42) 

where A o is the area enclosed by the section and y is the shear strain. 

Since, in the formulation of the material model of Section 4, it is 

assumed that the shear response is elastic. In this case Eq. (3-42) 

becomes 

dB - 1 -= 
dx 2AOG : ds 

Substitution for q from Eq. (3-41) in the above equation yields 

dB 
dx = 2AOG +jj+ [- Is, 2 tds]ds +$j; ds 

or 

2AGdO- 0 dx 9 $ ds 

+ ds 

(3-43) 

(3-44a) 

where 
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q' =+; g t ds (3-44b) 

It can be shown that the denominator of Eq. (3-44a) is given by 

4A 2 
.$ ds = ?- (3-45) 

where J is the torsional constant for the section. 

If q(s) denotes the total shear flow due to bending and torsion, 

q,(s) the shear flow due to bending ,alone and q,(s) the shear flow due 

to torsion then the latter is given by 

(3-46) 

where s 0 is the perimeter of the section. Hence 

qb(d = q(s) - qt(s> (3-47) 

3.3 MEMBRANE ELEMENT 

A membrane element is a plane triangular thin element which under- 

goes only in-plane deformations resulting from displacements of its 

vertices. No out-of-plane deformations are admitted, but the element 

can undergo large rigid body motions. The usual assumptions of the 

engineering theory of membranes are implied in the development of the 

element stiffness properties. 

3.3.1 Geometry of Deformation of a Membrane Element. -. 

Figure 3-7 shows the initial and deformed positions of a typical 

membrane element. The initial undeformed position of the triangular 

element is specified by the co-ordinates of its three vertices, pO, 

q" and r" (taken in a counterclockwise sense) with respect to the fixed 

system of global axes X, Y and Z. The vertices of this triangle after 

deformation are labeled as p, q and r. Local x' and y' axes are chosen 

to lie in the plane of the deformed triangle with the xl-axis coinciding 
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Fig. 3-7 Deformation of the Membrane Element. 
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with the side pq. The z' -axis is accordingly perpendicular to the plane 

of the deformed triangle. a and 8 denote the angles at the vertices p" 

and p before and after deformation respectively. If Ui' Vi and Wi (i = 

PO, qO, r") are the displacement components of the ith vertex referenced 

with respect to the X, Y and Z axes respectively, then the co-ordinates 

of the vertices, p, q and r with respect to these axes are 

X. 1 = xi + L; yi = Yi + vi, zi = zi + wi (i = p,q,r). (3-48) 

Unit vectors 61 and 8 along the sides pq and pr are given by 

xqP 
i+y j+z k A A 

8 = = 
1 J' lx i + yqPj + z b 

xqP qP qP 
+ yL + ZL qP 4P 

(3-49a,c) 
A A * 

X h 
$= rp i+yrj+z rpk = (x i + yrpi + z 

Jx' -I- y‘ + ZL rp rpi) IQ 
rp rp rp 

where 

x.. 
=J 

= Xi-X., y.. = Yi-Y” 
J iJ J 'ij = 'i-'j 

Accordingly, unit vector G 3 normal to the plane of the triangle is 

is x^e 1 [ (Y 4pZrP- rpZqp Y 
; c-z 

)I+(zqpxr -zr x4 G+(xqpYr -xrpYqp)G 
3 sinB D 

(3-50a) 

where 

D=[(Y z qp rp-Yrpzqp > *+cz 4Pxrp-zrpxw 
)2+(~qpyrp-xrp~qp~211’2 (x-sob) 

The unit vector ^e2 (along the y'-axis) is then given by 

iFi =^e x8 2 3 1 - 

{xrp (Y;p+z;p) - Xqp(YqpYrp+zqpzrp) 12 

= & 

I 

+{y (z2 2 
rp w+xw' 

- y (z z +x x 
4p 4p rp w 9 

,>; 

1 +‘zrp(x~p+Y~p) - zqp(xqpxrp+YqpYrp) 1; 

(3-51) 
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Equations (3-49) through (3-51) together yield the required transforma- 

tion matrix between global and local co-ordinate systems, i.e., 

^e 1 xl x2 x3 2 

IlL 111 

g = 
.2 1-ll v2 1-13 5 

I\ 
^e 3 v1 v2 v3 k 

or 

2 A1 % vl 

lI[ II 

c 1 h 
j = X2 u2 V2 G2 

ii x3 1-13 v3 is 3 

(3-52a) 

(3-52b) 

where 

x1=+, x2=* xP ,x3=+ 

Ul = [Xrp(Y~p+Z~p) - Xqp(YqpYrp+ZqpZrp)'DR 

(3-52c,g) 

v2 = [Y,~(z~~+x;~) - ~~~~~~~~~~~~~~~~~~ I /DR 

!J3 = [Zrp (x2 +y* > - z (x 
qP 4P qp x +Y Y 4P rp w rp )I/DR 

5 =(y z w rpBYrpzqp 
> ID, v)2 = (Zqpxrp-zrpxqp)/D 

and V 3 = (Xqp~rp-xrp~qp) ID 

3.3.2 Deformation Mode Shapes, Stresses and Strains 

The simplest form of a plane stress triangular element is the con- 

stant strain element. The assumed displacement field as a function of 

the local co-ordinates is 

u=a o + alx + a2Y 
(3-53a,b) 

v = b. + blx + b 2Y 

The constants in Eq. (3-53) are evaluated from the conditions 
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u(O,O) = u 
P' 

v(O,O) = v 
P 

u(R',O) = u 
q ' 

v(R',O) = v 
q 

u(Q"cosa, Q"sina) = ur , v(Q"cosa, Q'sina) = vr 

Substitution of Eqs. (3-54) into (3-53) yields 

(3-54a,c) 

6U 6U 
u = up + ( 6uq, +$&- RO x -$ cotaly 

(3-55a,b) 
6V 6V 

'V = VP + ( RO x % +@&y $! cotaly 

where 

6U =u -u ,6v =v -v 
q 4 P 9 4 P 

(3-55c) 

6U =u -u =v -v r r P 
,6v r r P 

(3-55d) 

The rigid body motion of the element in the local co-ordinate system is 

eliminated by setting u =v =v =o. 
P P q 

The strains ~~~~ E 
YY 

and y 
xy 

for finite deformations are the components of the Green's strain tensor 

which for the two dimensional case reduce to: 

E xx 
=g++ ($$+$ (y 

“YY 

bV r 1 6U 6U r 2 6V 2 = o + - [Y - Q sina 2 Q sina 3 cota] +Q r> 2q"sina 

Y 
au av =--+-+- 

XY ay ax 
au*+z2x 
ax au ax au 

6U r 6U 
= \q"- 3 R~ cOta> + ( R~ % jy&- - 6"4 

sina a R" cota) 

(3-56a) 

(3-56b) 

(3-56~) 
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From Fig. 3-15 it is evident that 

6U 
9 

= (R - R"); 6u r = (Qcos13 - Q'cosa); 6v r = (QsinS - Q'sina) (3-57) 

where 

cosa = (X X 4-Y Y 
qp rp 4P rp + ZqpZrp) /Q-O 

COSB = (x 
wXrp 

+YY +z 
4P rp qpZrp)'QR 

(3-58a) 

(3-58b) 

Equations (3-56) through (3-58) complete the description of the strain 

field as a function of the relative nodal displacements which in turn 

are functions of the global displacements. It should be noted that non- 

linear terms in the strain displacement relations, Eqs. (3-56) imply 

that the formulation admits arbitrarily large rotations but at best 

moderately large strains. 

3.3.2.1 Stresses and Nodal Forces of the Elastic Membrane Element: The 

stresses in the constant strain membrane element, assumed to occur at its 

centroid, are given by 

(5 E E 
xx = ~ (E 

(1& xx 
+VE >;a 

YY YY 
= - (E 

(l-v*) yy 
+ VEX,); 

E 
T =- 

XY 2(l+v) Yxy (3-59) 

The corresponding nodal loads in local co-ordinates can then be obtained 

by the relations [20] 

Q px = - + mxx 

6U 

- $$ cota)]Q"sina + r xy(l+ %)(Q'cosa-R')] 

Q PY 

Q 
qx 

= : {[axx(l + coto)]Q'sina - f 'cosa] 

Q qY 
-t ~~~(1 + &z)Q"sina] 

6V 

Q =- 
rx ; &(l+ Ro %)R"; Q,, = ; uyy(l + &W (3-60) 
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Section 4 

MATERIAL MODEL 

4.1 Basic Assumptions 

This section provides the theoretical basis along with its under- 

lying assumptions for the material behavior in the inelastic range. 

By material behavior, we imply the prediction of the stress state and 

the strain energy density at a point in a material for a known strain 

state. Two theories are available for describing the material behavior 

in the inelastic range: (i) the deformation or total-strain theory and 

(ii) the flow or incremental strain theory. The difference between the 

two theories lies in the fact that the deformations predicted for the 

volume element by the former theory are independent of the loading path 

while those predicted by the latter theory are path dependent. Further- 

more, the deformation or total strain theory postulates the existence 

of a strain energy density function in terms of total strains while the 

flow or incremental theory postulates the existence of an incremental 

strain energy density function in terms of the incremental strains. In- 

cremental strain theory has the advantage that it describes more fully 

the behavior of a volume element but it has the disadvantage that the 

thoery requires time consuming numerical analysis. The total strain 

theory on the other hand has the advantage of mathematical simplicity 

but does not conform to physical reality for some problems [21]. Be- 

cause of its mathematical simplicity ACTION uses the deformation or total- 

strain theory. It is believed, however, that even at the expense of 

the complexity of the material model there may be a slight computational 

advantage, in terms of the performance of the solution algorithm, to be 
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gained by the use of the incremental strain theory [22]. 

Both the total strain and the incremental flow theories assume that 

the total strain or the strain increment, as the case may be, can be 

decomposed additively into an elastic and a plastic component. Lee [23] 

has shown that such a decomposition is in general not valid for large 

strains but may be justified if the plastic strains are predominant. 

Incidently, Hencky's total strain theory assumes that in the strain 

hardening range the inelastic component of the total strain is predomin- 

ant. Thus, in view of [23], of the two theories Hencky's total strain 

theory would appear to be more consistent for cases wherein the strains 

are large. 

Hencky's theory [21] embodies three hypotheses: (i) the principal 

axes of stress and strain coincide; (ii) Mohr's circle diagram of stress 

and strain are similar at any stage in the inelastic deformation; and 

(iii) volume changes are elastic i.e., the inelastic deformations are in- 

compressible or that V = +. 
P 

These hypotheses lead to the following 

relation 

E -E 
xx yy = .-h= constant 

U 
xx-"YY *Ly 

(4-l) 

Furthermore, Hencky's total strain theory assumes that the strain energy 

density, W, is a function of the effective strain, E, defined as 

for a two dimensional stress state 

(4-2) 

( EXX for a uniaxial stress state 

such that 

I 

(a2 +a* -u u +3r 2 ) 112 for a two dimensional stress state 
xx YY xx YY XY 

dW=yj= (4-3) 
d; U xx for a uniaxial stress state. 
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The stress strain relations 

aw 
r=u L!!Lzu 

xx* ae 
2-c 2-r 

xx YY YY and ayW w 
(4-4) 

obtained from Eq. (4-2) satisfy Eq. (4-l). 

Equations (4-2) and (4-3) imply the use of Hencky's total strain 

theory along with its assumption that in the strain hardening range 

the inelastic component of the total strain is predominant [21]. This 

in a way is consistent with the assumption that -the total strain can be 

decomposed into an elastic and a plastic part especially in cases where 

the strains are large [23]. According to reference [23] it is only when 

the plastic strains are predominant that such a decomposition is justi- 

fied. Thus, the present formulation appears to be consistent in the 

strain-hardening range. 

Next, Von Mises criterion is used to predict'yielding. Accord- 

ing to this criterion yielding is assumed to occur when the effective 

stress, ??, which incidently is also the second invariant of the stress 

tensor or equivalently the octahedral shear stress, reaches the value 

a 
Y' 

the yield point of a uniaxial tension test. 

4.2 Modeling of stress-strain curve and the treatment of stress-strain 

history [15] 

The stress-strain curve of the material under uniaxial tension and 

compression is used as the effective stress-effective strain curve. This 

curve is modeled by eight straight line segments as shown in Fig. 4-1. 

Four of the eight segments describe the tensile side of the curve and 

the remaining four describe the compressive side. The left and right hand 

ends of the curve represent material failure. The sign of the quantity 

(E=+E 
YY 

) i.e., the sign of the first invariant of the strain tensor is 
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used for the selection of the tensile or the compressive branch of the 

curve. It is assumed, however, that the material has the same modulus 

in tension and compression. The model permits situations involving 

initial stress and strain. It is required that all points on the curve 

be uniquely determined by the strain parameter and certain indeterminate 

conditions requiring special treatment are not considered. 

From an unloaded state the loading for cyclic increasing or de- 

creasing strain follows the initial linear elastic portion of the curve 

as long as the effective stress does not exceed the stresses correspond- 

ing to tensile and compressive yield points. For increasing effective 

strain beyond the yield points, the loading follows the effective stress- 

strain curve with yieldingoccurringas described in the previous sec- 

tion. Once into the plastic region, when the effective strain starts 

to decrease, unloading occurs. Unloading in the plastic region is as- 

sumed to be elastic with the load path described by the shape of the 

initial elastic portion of the curve. Points 'b' and 'd' in Fig. 4-2 

denote the new tensile and compressive yield points. Loading for addi- 

tional decreasing and increasing strain follows the new elastic curve as 

long as the effective stress does not once again exceed the stresses corres- 

ponding to the new yield points. For straining beyond the new yield 

points, the subsequent loading and unloading is treated as described 

earlier except that the portion of the stress-strain curve between points 

'b ' 'd ' in Fig. 4-2 0' 0 is for all practical purposes forever lost from 

the "memory" of the material. This type of stress-strain behavior gives 

a larger tensile yield stress and a smaller compressive yield stress as a 

result of plastic deformation in tension. The converse is true for plas- 
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tic deformation in compression. These changes to the stress-strain 

curve are the strain-hardening and Bauschinger effects. 

Recall that the transient response is based on a stepwise integra- 

tion in time. Each time step corresponds to a loading or an unloading 

increment on the stress-strain curve. Let ijo, EO correspond to a previous 

time point and 51, Elrepresentthe state at the current time point. If 

E 1 is greater that Eo, it is assumed that the material "loads up" only. 

Likewise if El is less than Eo, it is assumed that the material loads 

down only. This is illustrated in Fig. 4-3. It must be recognized that 

for any given loading two or more solutions all of which satisfy equil- 

ibrium are possible but all these solutions correspond to different 

strain histories. Hence, for El greater than E. the only possible 

solution is the one corresponding to the point 'a'. The solution corres- 

ponding to the point 'c' satisfies the constitutive relation but vio- 

lates equilibrium for a member loading up. The point 'c' is a possible 

solution for El greater than E. if and only if the member is first 

loaded up to the point 'b' and loaded down from this point to the point 

‘C’. Such two step loading processes are not admitted in the formula- 

tion. 

4.3 Evaluation of Dissipative Strain Energy Density 

For the elastic-plastic response the strain energy density is de- 

composed into an elastic part and an incremental dissipative part. 

Thus, if 'ao' in Fig. 4-4 denotes the state at some previous time to and 

if 'a' denotes the state at time (t,+At) then the incremental dissipa- 

tive strain energy density AWd and the elastic strain energy density We 

are, by assumptions, the appropriate areas under the idealized effective 

stress-effective strain curve as shown in Fig. 4-4. 
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For the truss element EX is the only strain prescribed and the 

corresponding stress ux is assumed constant over the length of the 

element. For the frame element, however, stresses vary throughout the 

volume of the element. Certain number of Lobatto quadrature or refer- 

ence points are used to describe the stress distribution throughout the 

element. At each of these points, the material model is used to deter- 

mine the stress and the strain energy density (We+AWd>. In the interest 

of simplicity, it is assumed that the shear stress-strain behavior is 

adequately described by linear elastic response. This implies that the 

plastic action is adequately described by the effects of normal stresses 

and strains alone. This approximation should be appropriate for ele- 

ments wherein plastic axial or bending actions predominate. In the case 

of a membrane element all the three stress components are by assumption, 

constant throughout the element and hence as in the case of the truss 

element the stresses and the strain energy density need be evaluated at 

a single point. 

The above ingredients comprise the treatment of loading and un- 

loading in the plastic regions with strain-hardening and Bauschinger ef- 

fects. Although, the model used here is typical of most material be- 

havior it is relatively simple and not all material behavior will fit 

this model. Caution should particularly be exercised when this 

simplified material model is used in conjunction with membrane elements 

(two-dimensional stress states) undergoing cyclic loading. 
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Section 5 

KINEMATIC CONSTRAINTS 

Practical modeling considerations demand that equations of motion 

be augmented by constraint equations. This section describes constraint 

models in ACTION which facilitate representing a rigid tie between joints 

and an impenetrable contact plane. 

5.1 Rigid Link Element 

A "rigid link" is a finite element which does not deform appre- 

ciably. As the nodes in the structure undergo displacements, the rigid 

element merely translates and rotates without any appreciable deforma- 

tions. Such a link can be used as a connector between two'members meet- 

ing at a joint whose ends do not coincide thereby simulating eccentri- 

cally connected members. Rigid links may also be employed advantageously 

when entire sections of the structure undergo very little deformation. 

During these periods the sections can be treated as assemblages of rigid 

links to greatly reduce the number of unknown displacements and thereby 

reduce the computing time. The nodes of a rigid link are located with 

reference to a global co-ordinate system and they are identified as be- 

longing to the same rigid link by input specification to ACTION. Points 

in each rigid link are referenced by a local co-ordinate system originat- 

ing at the primary node of the link. The local co-ordinate system trans- 

lates and rotates with the primary node as deformation takes place. 

Since there is no relative displacement due to deformation in the 

rigid link, the right hand side of Equation (3-15) set equal to zero will 

provide the relationships necessary to describe the motion of the q-end or 

secondary node of the link in terms of the translation components and ro- 

tation components of the p-end or primary node of the link. 
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Solving this equation for the global displacement vector of the 

secondary node of the link yields 

{ulq = hJlp + [T& IL) + {RIP - CRjq (5-l) 

This equation is envoked whenever the displacement components of the nodes 

are updated. 

The equation is implemented by searching the list of elements for those 

designated as rigid links. When one is found, the displacement components 

of the secondary nodes are replaced by those calculated by Equation (5-l). 

Furthermore, given the translation and rotation components of the velocities 

and accelerations of the primary node, the motion of a secondary node is 

determined using simple rigid body kinematics. Finally, knowing the 

kinematics of the secondary nodes the contribution to the total poten- 

tial energy, of inertia forces and loads applied directly to such secon- 

dary nodes, can be determined. 

5.2 Impenetrable Contact Plane (Terrain Model) 

The ACTION code includes a model of an impenetrable terrain to simu- 

late a ground plane. The ground plane is assumed to be rigid and flat 

i.e.,like a concrete runway. Penetration of the ground is not allowed. 

Resistance to forward motion along the ground plane is provided by 

coulomb friction. Impact with the plane is represented as a plastic col- 

lision. 

The paragraphs that follow explain the ground plane model in ACTION. 

5.2.1 Node Capture and Release 

The model detects when the nodes of the aircraft model contact the 

ground plane. Once contact has been made these nodes are constrained 

to remain on the ground plane until they are pulled off by the release 
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of internal energy stored within the aircraft model. Thus a node of the 

aircraft model does not bounce off the ground plane due to the effect of 

the coefficient of restitution, but is pulled off when tension would other- 

wise be implied between the structure and the impenetrable plane. 

Nodal displacements are obtained by solving the equations of motion 

for a particular time step. The current position of each node is then 

determined relative to the ground plane. If a node penetrates the ground 

plane, the time step is reduced and integration of the equations of 

motion is repeated. When a node penetrates the ground plane using the 

minimum time step, a check is made to see if its previous position above 

the ground plane was closer to the ground plane than its current posi- 

tion which is beneath the ground plane. (The likelihood of a node fall- 

ing exactly on the ground plane at the end of a time step is remote.) 

If the node's previous position was closer to the ground plane, integra- 

tion is backed up to the beginning of the current time step and a flag 

is set to signify contact between the node and the ground plane. If 

the node's position at the end of the current time step is closer to the 

ground plane, this position is used to mark the ground plane and a similar 

flag is set. Thus a node is considered to lie on the ground plane when 

it is as close to the ground plane as permitted by the minimum integration 

time step. (In terms of the logic of the code, the ground plane moves 

up or down to coincide with the position of the node.) 

Once contact has been made between a node and the ground plane, it 

must be determined whether or not the node is to be constrained to re- 

main on the ground plane during the next integration time step. This re- 

quires calculation of the total vertical resultant force acting on the 

structural model of the aircraft at the captured node. This force, which 
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is normal to the ground plane and positive upward, is the derivative of 

the strain energy function with respect to a displacement of the node 

in the direction of the outward normal to the ground plane. A positive 

normal force means the structural model is in compression in the vicinty 

of the captured node. In this case the vertical degree of freedom of the 

node is constrained for the next time step, but the node is still free 

to move horizontally along the ground plane. The vertical degree of 

freedom is constrained in the sense that the vertical displacement of the 

node corresponding to its current position on the ground plane is fixed 

for the next time step. A negative normal force means the structural 

model is in tension at the captured node. Then the vertical velocity, 

acceleration and all the higher order time derivatives of displacement 

of the node implied in the temporal algorithm are set equal to zero. 

The free equations of motion provide the basis for predicting subsequent 

behavior of the node until it is recaptured. 

Due to the discretization of time it is assumed that the best approxi- 

mation to the point in time when a negative normal force is found is based 

on the minimum integration time step. Thus if a negative normal force is 

discovered at the end of a non-minimum time step, the time step is reduced 

and the integration is repeated. 

A coulomb friction force is applied to each node captured by the 

plane. The force is applied in the direction opposite to that of the hori- 

zontal velocity components of the captured node. The magnitude of the 

force is equal to the coefficient of friction input by the user times 

the positive resultant nodal force normal to the ground plane. 
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Section 6 

ANALYSIS BY ENERGY MINIMIZATION 

6.1 Background Information 

It was indicated in Section 2 that two distinct solution approaches 

exist: (i> the vector approach and (ii) the scalar approach. In the 

former approach, the mathematical model is derived on the basis of the 

principle of virtual work and reduced to a system of non-linear second- 

order differential equations in time. In the latter approach, a scalar 

or a potential function associated with the energy of the model is 

introduced, minimization of which yields the desired equilibrium con- 

figuration. In both approaches a temporal finite difference scheme is 

utilized to effectively eliminate time as a variable. As a result, in 

the vector approach the equations of motion are reduced to a system of 

nonlinear algebraic equations in the unknown nodal parameters of the 

finite element model. In the scalar approach which is of relevance to 

this report the problem is reduced to a well known problem in mathema- 

tical programming namely the unconstrained minimization of a nonlinear 

function of several variables. 

For all structural problems with geometric and material nonlinear- 

ities of the type considered herein the required potential function al- 

ways exists. Although, this technique has been hitherto used for mainly 

positive or negative definite systems, other systems which fail to be 

positive or negative definite can be handled by using the least squares 

method or the modified conjugate gradient method with preconditioning 

[241. In some cases, for such systems displacement incrementation 

rather than load incrementation in conjunction with conventional uncon- 

strained minimization techniques can also be effective [25]. 
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6.2 Solution Basis 

The minimization scheme as applied to the solution of transient 

nonlinear structural analysis problems consists of minimizing a poten- 

tial function associated with the system for an assumed relationship 

between displacements and time. The displacement-time relation for each 

generalized nodal displacement of a finite element model is assumed to 

be of the form [26] 

9 ei 
= B(At)2iei + ($ - B)(Atj2ioi + (At)loi + qoi 

'ei = Wt);iei + (1-v) (At>;ioi + ;oi 

(6-la) 

(6-lb) 

where q ei is the i-th generalized nodal displacement at the end of the 

time step and B and y are constants. The quantities lei and yei can 

now be expressed in terms of the i-th generalized nodal displacement, 

qoi, velocity, :oi and acceleration, ;i Oi at the beginning of the time 

step and the generalized nodal displacement, q ei' at the end of the time 

step. Thus, 

. . (W2 
9 ei = 4Oi + ;ioi(At) + i & ((q,i - qOi) - (At);Oi - 2 ioil (6-h) 

1 ;iei = ;ioi -I- - { hei - qoil 
(At> * 

BW2 
- (At);oi - -zj-- ioi) (6-2b) 

The equations of equilibrium 

(6-3) 

for an N degree-of-freedom system with lumped masses can then be written 

as 

1 
Mi[;ioi + ~ 

BUtI 2 
{ (4ei - 9Oi) 

(AtI2 - (At);loi - 2 
au ;i,,)] - Fi+- = 0 

a4 3 ei 

i = 1,2,...,N (6-3a) 

It can be easily verified that Eqs. (6-3a) correspond to the necessary 
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conditions for the functional 

S = T { [ IL 
ii1 2B(At)2 "' 

2 - (+ qoi + & loi + (Y$ - ‘)iOi)qeilM 
@(At) i 

(6-b) 

to be stationary. In Eq. (6-4), U is the strain energy and C is an arbi- 
. 

trary constant. . . 
Thus, knowing qoi, qoi and qoi at time t for any given 

load Fi at time (t+At), the functional S may be minimized with respect to 

the generalized nodal displacements, qei (i=l,...,N), in order to deter- 

mine the corresponding stable equilibrium configuration. Although, the 

coefficient of M i in Eq. (6-4) is quadratic in qei, the strain energy, 

u, will in general be a nonlinear function (at the very least a quad- 

ratic for a linear problem) of the generalized nodal displacements qei 

(see Section 3). Thus, in general the functional S is highly nonlinear. 

Since, u is a positive semi-definite function for most structural ma- 

terials, the functional S can be seen to be convex. 

6.3 Minimization Algorithms 

Of all the algorithms for unconstrained minimization only the quasi- 

Newton or the variable metric algorithms have been more frequently used 

for such nonlinear problems, because of their higher effectiveness [27]. 

Again, unless there exists an algorithm which exploits and maintains 

sparsity of the Hessian approximation during its passage to the minimum, 

one has to resort to some form of a first order conjugate gradient al- 

gorithm for problems wherein N is an extremely large number. 

Beginning with an arbitrary initial guess, these algorithms seek 

a direction of travel and the amount of travel in that direction. The 

manner in which these are sought depends upon the sophistication of 
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the particular algorithm invoked. Most often the directions of travel 

are sought in a manner which guarantees not only a decrease in the value 

of the function but also convergence to the minimum in a finite number 

of iterations (usually N+l for an N dimensional space) in the case of 

quadratic functionals. It is important to note that all functionals in 

question are very nearly quadratic in the neighborhood of the minimum. 

6.3.1 BFGS Variable Metric Algorithm 

The present formulation uses the well-known BFGS (Broyden-Fletcher- 

Goldfarb-Shanno) variable metric algorithm [28] which is supposedly the 

best current variable metric update formula for use in unconstrained 

minimization. This algorithm dispenses with the exact line searches 

while using an update formula which, in the case of a quadratic func- 

tional, guarantees a monotonic convergence of the eigenvalues of the ap- 

proximating matrix to the inverse Hessian. The iterative scheme which 

is begun with the null vector as the initial guess is defined by 

cql(k+l) = Cql(W _ $d [H] WigI 04 (6-5a) 

where 

{g](k) = VS(q(k)) = gradient of S at q(k) 

[H](k) is a matrix which is designed to approximate in some sense 

the inverse Hessian matrix of S at {q] W and IX(~) is an appropriately 

chosen scalar. The BFGS update formula is given by 

lHl &+I) = ([I] - $ [P])[H](k) ([II - + [PI) + bmlT/B (6-5b) 

where 

[PI = {al{ylT 

B = CcrlTIyl 

(o} = {q)(k+l) - {q)(k) 

(y} = {g)(k+l) - {g)(k) 

(6-5~) 

(6-5d) 

(6-5e) 

(6-5f) 
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The CX(~) in Eq. (6-5a) is chosen either by a linear search or by a step 

length but so as to maintain the positive definiteness of the matrix 

[HI. The details of the step length calculation may be found in refer- 

ence [29] or reference [30]. 

The iterative scheme is begun with an initial guess which for the 

first time step is usually the null vector for {q], the unknown general- 

ized nodal displacements and the identity matrix for [HI, the approxi- 

mation to the inverse hessian. From thereon these quantities at the end 

of the previous time or load step are used as initial guesses for the 

next step and it is this reasonably good approximation to the inverse 

Hessian that is instrumental in giving the second order methods a signi- 

ficant advantage over the first order methods like the conjugate grad- 

ient techniques. The required gradient of S is evaluated analytically 

although doing so by a finite differencing scheme is also possible. The 

use of an analytic gradient however, results in a substantial saving in 

the computational effort. This saving is the result of not only a 

cheaper gradient evaluation but most often a faster convergence of the 

solution because of higher accuracy of all the computed quantities [27]. 

The i-th component of the gradient of S can be written as 

as - = Mizei au 
aq ei - Fi+ aq ei 

(6-b) 

The term in Eq. (6-6) requiring significant computational effort is 

%A --- 
a4 

as it embraces the geometric and material nonlinearities. Thus, 
ei 

au= 
aqei 

: 1 -&- dvk = : IVk (zkk&lkdvk 
kil Vk aqei k=l 

(6-7) 

where 

W = strain energy density; E and a the effective strain and stress 

effectively as defined in Eqs. (4-2) and (4-3). 
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6.3.2 Powell's Conjugate Gradient Algorithm 

The algorithm [33] is designed to improve the linear convergence 

rate of the Fletcher-Reeves' conjugate gradient algorithm [34] by using 

a restart whose frequency is not the usual n or (n+l) iterations but 

rather one which is dependent on the objective function. Thus the 

basic algorithm may be stated as follows. 

Given {q], the initial direction of travel Id], is defined to be 

the steepest descent direction -{g], = -{VS] 1' For k > 2 

{q) k+l = {qlk + XkIdlk 

{d]k = -{g], + Bkjd]k-l + YkId), 

8, = bd;[(g}k - {dk-1 /k&[{dk - {dk-ll 

(6-8a) 

(6-8b) 

(6-8c) 

yk = {g${dt+l - Cg]tl/Id];[{g]t+l - {g],] (6-8d) 

where t is initially set equal to one and for k > 2 t is set equal to 

k-l if 

1 _> o-211{dkl 12- (6-8e) 

Xk in Eq. (6-8a) is determined by a line search which yields not only 

a decrease in the directional derivative but also requires the angle 

between {g]k+l and Id], to be close to ninety degrees. Next, if the 

inequalities 

-l.411g1k112 _< {d+glk _< -0.811{dkl I2 (6-8f) 

are not satisfied then {d]k is assumed to be not sufficiently downhill 

and the procedure is restarted by letting t = k-l and redefining (d]k 

by letting yk in Eq. (6-8a) to be zero. The procedure is also 

restarted if (k-t) > n by setting t = k-l and assuming yk in Eq. (6-8a) 
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to be zero when k = ti-1. For additional details of this algorithm along 

with its fortran listing the interested reader should refer to reference 

[35] which also provides a listing of the subroutine for the BFGS var- 

iable metric algorithm of the previous section. 

The storage requirements of this algorithm exceeds those of 

Fletcher-Reeves' only slightly but they are certainly very small by 

comparison with those of the variable metric algorithms. Thus, this 

algorithm is intended for extremely large scale problems of the 

order of thousand degrees of freedom or above. However, the 

performance of this algorithm for the solution of such large scale 

problems of relevance to this report remains to be investigated. 

6.4 Evaluation of the Function S and its Gradient 

The function S and its gradient must be expressed explicitly or im- 

plicitly as a function of the global generalized nodal displacements of 

the finite element model. 

6.4.1 Function Evaluation 

From a known vector of the generalized nodal variables in the global 

co-ordinate system, consistent with the prescribed boundary conditions, a 

vector of local generalized variables in the co-rotational co-ordinate 

system of each element is established through transformations which are 

functions of its geometry and its rigid body rotations (see Section 3). 

The assumption of deformation patterns of the element as functions of 

these local generalized nodal variables (interpolating polynomials) 

yields element strains. Recourse to the element material model then 

yields the corresponding stresses and strain energy densities at various 

predetermined quadrature points over the extent of the element. Barring 
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purely elastic response, a simple weighted summation of these quantities 

over the element volume yields stress resultants and strain energies re- 

spectively. For purely elastic response these are provided by well-known 

closed form expressions which can be generated as follows based on the 

results of Section 3. 

6.4.1.1 Strain Energy Evaluation for Elastic Response 

The total strain energy U may be expressed as 

u= T Uk (6-g) 
k=l 

where for purely elastic response a closed form expression for Uk, the 

strain energy of the k-th element, can be obtained from the usual defini- 

tion of the strain energy and the use of the results of Section 3. Out- 

lined below are such expressions for the truss, the frame and the mem- 

brane elements. 

6.4.1.1.1 Truss Element 

The strain energy of the k-th truss element is given by 

Uk = + I, crXcXdv = ; Jv s;dv 

which from Eq. (3-5) can be written as 

Uk = y (%)2 

wherein E, A and L pertain to the k-th stringer element. 

(6-10) 

6.4.1.1.2 Frame Element 

The total strain energy of deformations of finite element due to 

bending, tension and shear is given by 

'k = 'kb + 'kt + 'ks (6-11) 

where 
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U kb = 7 v sxdv El 2 

which from Eqs. (3-24), (3-25) and (3-32) reduces to 

U 

which from Eq. (3-33) reduces to 

U GJ 2 
kt = x $x 

and 

U ks = + ( (VyYsxy + VZYsxz)dx 

(6-12) 

(6-13a) 

(6-13b) 

which from Eqs. (3-27), (3-28), (3-29) reduces to 

U ks =y+(+)2+Iyz $++ 

6v 6w 6W 

Y 
&I ‘+ ‘+ + $ (+)21 (6-13~) 

YZ ZY z 

Frame elements with only five typical cross-sections namely BOX, IE, 

TUBE, ELIP and SORE (Solid Rectangle) are permitted. Explicit express- 

ions for the various section constants associated with each of these 

cross-sections can be found in Appendix A. 

6.4.1.4.3 Membrane Element 

The strain energy of the k-th membrane element can be obtained by 

integrating the strain energy density function W* over the volume of the e 
element. The assumption of constant strain within the element simplifies 

this integration to yield 

Uk = - EAh [E2 + E2 
(l-V)2 = 

+2v,E E 
yy xx YY 

] : (1-v) y2 
2 XY 

(6-14a) 
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where from Figure (3-7) 

A = 4 Q'R" sin (Y (6-14b) 

and the strain terms are given by Eqs. (3-56) through (3-58). 

6.4.1.2 Strain Energy Evaluation for Inelastic Response 

Although closed form analytical expressions for U can be developed 

when the material is elastic the same is not true when the material 

yields. Then the response depends upon the current values of stress 

components and past history. As shown in Section 4 Von Mises' yield 

criterion together with Henckey's total strain theory provides a simple 

means of calculating strain energy density distributions throughout an 

element that has yielded. Because total stresses and total strains are 

no longer linearly related recourse must be made to numerical integra- 

tion of the strain energy density over the volume of the element. 

The strain energy density may be decomposed into an elastic part 

and an incremental dissipative part thereby providing an estimate of the 

total energy of the system that has been dissipated through inelastic 

deformations. Thus for a system with m elements 

U = strain energy = i 
i=l 

Ui = T U; + AU; 
i=l 

= j, (I,. w+ + I, AW;dv) 
1 i 

(6-15) 

where W,' and AW: are obtained from the material model as described in 

Section 4 (see Figure 4.3). 

For open or closed cross-sections of the type shown in Fig. (6-l). 

The integrals in Eq. (6-15) are expressed as sums of integrals over a 

finite number of strips, ns. In keeping with the assumptions of the thin- 

walled theory the integrands are assumed constant over the thickness 
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of these strips. Both integrals in Eq. (6-15) are of the form 

n 

IS t. 1 f.dA 
j=l J Aj J 

(6-16) 

which using a three point Lobatto quadrature rule in each of the two 

co-ordinate directions in the plane of the strip reduces to 

,~l ,I, Jo: 

t.A.H H f 
JJ Rk j!Zk (6-17) 

HI1 and Hk are the weights and f. 
Jgk 

is the value of f 
j 

at the R-kth 

quadrature point [31]. The exact locations of these quadrature points 

(or equivalently also the stress reference points) for the four dif- 

ferent cross-sections can be found by referring to Appendix A. 

6.4.2 Gradient Evaluation 

The gradient of S as defined by Eq. (6-7) involves the accelera- 

tion vector ;iei which for a given vector qei, is provided by Eq. (6-12) 

as 

1 iei = - 
. 

[ (qei 
1 

B(At)’ 
- qoi> - qoiW - (7 - 8)ioi(W21 (6-18) 

and the gradient of U with respect to qei is given by the general ex- 

pressions in Eqs. (6-8). The expressions in Eqs. (6-8) can, however, 

be simplified and reduced to a closed form if the response is purely 

elastic. 

6.4.2.1 Strain Energy Gradient Evaluation for Elastic Response 

For purely elastic response the i-th component of the gradient of 

strain energy can be calculated as 

au= m auk 

aqei ,z, aqei = 
(6-19) 

where r 
j 

are the local relative degrees of freedom of the q-th node 

relative to the p-th node and n r the total of such local relative degrees 
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of freedom. U k is the strain energy of 

being the number of elements which have 

common. 

6.4.2.1.1 Truss Element 

The relative degree of 

tion of the relative global 

: = iEl WL)E $1 
au 

9 

the k-th member, k = 1,2,...,m 

the qei degree of freedom in 

freedom in this case, E = DL/L, is a func- 

displacements AU, AV and AW. Thus, 

(6-20) 

From Eqs. (3-2) and (3-3) it follows that 

aE -= 
au au 

q 

m+m ; as = _ $5 

L2(1+s) P q 

aE -= 
av 

((AY+AV>) aE = aE 
k;y 

-- 

q L’(l+E) 
ZJV 

q 

aE -= 
aw 

((AZ+Aw)) 

L2 (l+E) 

aE = aE -- 

q 
k;%$ aw 

q 

(6-21a) 

(6-21b) 

(6-21~) 

6.4.2.1.2 Frame Element ~371 

The relative degrees of freedom in this case are Au, 6vb, 6wb, 

9,, 9, and $, and whereas Eqs. (6-12) through (6-14) provide U as a 

function of these relative generalized displacements, Eqs. (3-16) through 

(3-21) provide the necessary relationships between them and the relative 

global generalized displacements AU, AV, AW, AOx, ABy and ABz. 

Thus for the k-th element 

auk - = 
a (6~) 

EA (9) (6-22a) 

+ 
12k EIZ 

L2 
(6-22b) 

YZ ZY 
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auk 6~ 
acsw,'=z 

+ 

iIy12g% f $,I + 21yz[( L 3, - $$,I> 

12kzEI 

L2 
y &H&+ &I($ + $ (f&l (6-22~) 

YZ ZY Z 

(6-22d) 

auk CSW 8vb L-c 
w 

6E 11 rt+ 
Y L2 Y 

+ 5 $,I + 21yz[i \L' - +,]} 

6K EI 
+* I&w&+ 

6V 6W 

&H+ + $ (+I3 (6-22e) 
YZ ZY Z 

auk -= 
w 

Z 

Furthermore, it can be easily verified from Eqs. (3-30c,d), (3-34 a, b) 

that 

ah, 
ah 

-=&-J[q-yz 

aJIX 
+z~ a$, 

aqei s aq ei + 2 agei 

and 

aswb 
a6w 

w 

- = +T [aqei + ye aqei 

4~ w 

aqei 
-“++$I 

ei 

(6-23a) 

(6-23b) 

It remains to derive expressions for the derivatives of the relative 

generalized displacements. For the case of large of deformations pro- 

vided by Eqs. (3-16), (3-17) and (3-19) 

awd - _ 
aCulp 

[T21; [TllT 

(6-24a,b) 

my a{aul - [T2]; ITlIT 
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w = CT,l; [TllT 
P 

aIw -= [Ol ato)g 

ai I 
-7% au 

= [Ol 
P 

a{ 1 
+ ao 

P 
= IT,]; PllT 

-7% ;‘,I = [T21T iTlIT 
4 

where the components of [T ] are 
TP 

TT 
l1 = 0 

T 21 = 
T (s 

X 
sz + cx s y cz> (Ax + Au> + (-sx cz 

+ cx s y sz)(AY + Av) + cx cy(Az + AW) 

TT 
31 = (c s -s x z x sy c,>(Ax + AU> - (c c 

x z 

+ sx s y s,)(AY + Av) - sx sy(AZ + AW) 

TT 
12 = - sy cz(Ax + Au) - s y sz(AY -I- Av) 

- cy(AZ + AW) 

TT 
22 = s 

xcy z c (Ax+Au) +sxcysz(AY+Av) 

- sx sy(Az + AW) 

TT 
32 = c x cy cz(AX + AU> + cx cy sz(AY + AV) 

- cx sy(Az + AW) 

(6-24c,h) 

(6-25a,h) 
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TT 
13 = 

-cy z s (AX+AU) +cycz(Ay+AV) 

TT 
23 = ( -c x cz - sx sy s,)(AX + AU> + Gcx sz 

+ sx sy cz) (AY + AV) 

TT 
33 = (s C -c s x z x y sz) (AX + AU> + (s s x z 

+ cx s y cz> (AU + AV) 

and the components of [TRIP are 

(6-25g,i) 

T l1 = 
R - cy cz 

T 21 = 
R (s x +c s x z x Y 

cz) ABx - (-cx sz + sx s cz) 
Y 

+ (-sx cz i- cx s sz> ABy + cx c Aez 
Y Y 

T 31 = 

R (c s -s s x z x Y 
cz) ABx - (sx sz + c 

x sY cZ) 

- (cx cz + sx sy sz> ABy - sx cy Aez 

T l2 = 
R - sy cz A0 x - sy sz AeY - cY s z - cy A9 

Z 

T 22 = 
(6-26a,h) 

R s c c 
x Y z 

Aex + sx cy sz AOy 

- (cx cz + sx sy sz) - sx sy Aez 

T 32 = 
R c c c 

x Y z 
ABx f c c s A'3 

XYZ Y 

- (-sx cz + cx sy sz> - cx sy Aez 

TR 
IL3 = - 

cy sz ABx + cy cz ABy + s 
Y 

T 23 R = (-cx cz - sx sy sz) Aex + (-cx sz 

+ sx s 
Y 

cz) A0 - sx c 
Y Y 
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33 = (s 
TR 

c - c x z x sY 
sz) Aex + (sx sz 

+ cx sy z y c ) A0 - cx cy 

(6-26i) 

6.4.2.1.3 Membrane Element 

The relative degrees of freedom in this case are 6Uq, 6ur and 6v r 

(see Fig. 3-7). Thus for moderately large strains 

"k 
6U 

E- [ (>I{ (yhxy($5& - -= - cota(1 + 2 31, 
aqej 2(1-v2) ej 

BU 6Ll 6U 
+ (Em+vEn) (3 + 1) + (Eyy+VE&C=‘td+ cota 

f (E~~+VE& (& $j&& - 
6U 
+ cotdl 

(6-27a) 

where 

(6-27b) 

ah ac0.5B 2 = K co& + Q c 
aqej aqej 4 

(6-27~) 

ah 
‘I: = e sin6 + Q p (6-27d) 
aqej ej 4 

and 

izL= 
aqej 

(6-27e) 

as = i [xrp 2 + Yrp $= + zrp 3 

aqej e j 4 
(6-27f) 
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ac0d 
aqej 

= j$ [ ($lXrp + xqp 
ej 

39 + +%Yrp a4 
ej ej 

az az 
+Y 2% + (*lzrp + zqp$% 

qP aqej 4 ej 

asinf? acod - = - 
aq 

cotB( -1 
ej aqej 

$= 
1 =u 

9 
-lif q =u 

3j 
i J 

3 P 
1 

= % Or u P 

ay I 
1 =v 

A= -1ifq. 
q 

aqej 
\ 

ej 

1 

=v 

0 
iv: P 

or V 

+ 
1 

1 1 

=w 
q 

-lif q 
ej ej 

=w 

0 
Pp P 

or W 

(6-27g) 

(6-2711) 

(6-27i) 

(6-275) 

with similar relations for derivatives of x , y and z 
rp rp rp 

with respect 

6.4.2.2 Strain Energy Gradient Evaluation for Inelastic Response 

For inelastic response the i-th component of the gradient of strain 

energy is evaluated as 

(6-30) 

where W and E are defined as in Eqs. (4-4) and (4-5) and the remaining 

equations are defined in Section 6.4.1.2. As in the case of the strain 

energy, the gradient evaluation for inelastic response necessitates a 

similar integration using quadratures. Except for the change in the 

integrand this evaluation is identical to that described previously. 
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6.4.2.2.1 Truss Element 

In this case Ek = Ek which is also the relative degree of freedom 

(j=l). Thus 

(aE) = 1 
arj k 

Expressions for (arj/aqei) are provided by Eqs. (6-21). 

6.4.2.2.2 Frame Element 

In this case again Ek = (EX)k. With the aid of Eqs. (3-24) and 

(3-32) this is seen to be 

E k 
=K-E [6(1-2~) 2 + 2(3n-l)Yz] 

6W 

- ; [6(1-2~) -$ - 2(3n-l)Yy] (6-31) 

where K is given by Eq. (3-35). Thus, for the case of large elastic 

deformations 

a:, 

L (a(h,)) = - L * (l-277) + $ (%) - & Yz + 2 

a:, 

L (a(swbj) = 
- + (l-2n) + $ (2) + & Yy + &s 

aE 
k 

6W 

a CYy) 
=k 3-1)++-(+)+1y 

L('1 15 Y 

a:, BV 

- = - 
a(yz) 

2 (3w1) -+&%++p, 

(6-32a, g> 
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a:, 

L (a(sws) 
-) = (2) + (2) 

Expressions for (arj/aqei) are provided by Eqs. (6-26), (6-27) and 

(6-28). 

When a frame element responds inelastically, an additional node 

is added at the center of the element. The axial displacement field 

is then defined with the aid of two relative axial degrees of freedom 

&I 1 and 6u 2 as evident from Eq. (3-36). Equation (3-37) provides the 

definition of 6111 in terms of other usual quantities. The derivatives 

of 6~11 and 6u2 can thus be obtained by differentiation of relations 

in Eq. (3-38a-h). Explicit expressions for such derivatives are however 

too lengthy and cumbersome and have been omitted accordingly. 

6.4.2.2.3 Membrane Element 

The effective strain, Ek in this case is defined by Eq. (4-4). 

Hence, 

aE 
= 4 (Eyy + + Exx> 

YY 3Ek 

aE, 2 Yxy -=-- 
w 3 

XY E 

(6-33a,c) 

Expressions for (arj/aqei) are provided by Eqs. (6-29). 
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Section 7 

SOLUTION ERROR CONTROL 

Errors in the present solution process arise from two sources: 

(i) truncation errors which occur due to truncating the series 

representation of the response Eqs. (6-l) and (ii) round-off errors 

which occur due to the use of a computer with finite digit arithmetic 

precision. In addition to the accuracy considerations of the solution 

process due regard must be taken of its stability. For linear systems 

it has been shown by Goudreau and Taylor [32] that in order to maintain 

unconditional stability of the numerical integration scheme given by 

Eqs. (6-l) the parameter S should be chosen such that 

6 2 0.25 (0.5 + y)2 

with y > 0.50. No such criteria can be postulated for nonlinear 

problems however, with the optimum values of B and y being very much 

problem dependent [25]. 

Proper choice of a step size (time or load) is thus crucial. If 

two large a time step is used truncation errors occur due to 

truncating the series representation of the response. Furthermore, 

there is a danger of instability of the numerical integration process. 

If too small a step size is used, computer accuracy limitations arise 

due to limited number of digits used by the computer to represent the 

response. In practice, irrespective of whether a problem is linear 

or not the determination of the optimum size is difficult because of 

the difficulties of accurately measuring the errors due to polynomial 

truncation and computer arithmetic truncation. 

Automatic error control in ACTION consists of varying time steps 
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to assure that the truncation error is tolerable. The errors are 

controlled by adopting time steps so that the equations of motion are 

satisfied to user specified accuracies at midstep times. In other words, 

some norm of the gradient of S in Eq. (6-4) is required to be less than 

a user specified limit. Using Eqs. (6-l) responses are interpolated 

for midtime. An equilibrium check is made using these displacements 

and midtime forces and interpolated accelerations. Similar equilibrium 

checks are also made at the end of the time step. If the errors are 

excessive the time step is halved and equations resolved. If the 

error is excessively small, the current results are accepted, stress 

and strain histories are updated but the time step for the next 

solution is increased by an arbitrary factor of 1.50. 

The following definition of error is adopted for checking equili- 

brium imbalance at the midstep or the end of the time step. For the 

i-th degree of freedom the equilibrium imbalance is given by aS/aqei. 

The imbalance is weighted depending upon the relative magnitudes of 

displacements. Thus, each gradient component is multiplied by the 

corresponding displacement component and the resulting work-like 

quantity is normliazed with respect to the current value of the 

potential function S. Thus the i-th component of the error vector 

is defined to be 

(~) 4ei 
Ei = ei 

S 

The norm of the error vector is defined to be 

(7-l) 

IlEll = max (Ei). 
i 

(7-Z) 

The errors at the beginning and at the end of the time step are 
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assumed to be due solely to convergence limits of the minimization 

process. Hence the allowable error at midstep due to truncation is 

assumed to be 

I IEI 

ll~llto+L$ -- 
Ito + IIEIIt +At 0 

2 (7-3) 

At being the size of the time step. It is this measure of error at 

midstep which is required to fall within user specified limits. 
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Section 8 

APPENDIX A - FRAME ELEMENT CROSS-SECTION DETAILS 

A.1 The Box Cross-Section [15] 

In this section formulas for the box cross-section are given. The 

box cross-section is a thin-walled symmetric closed section composed of 

four pieces as shown in Fig. A-l. Each piece has a uniform thickness 

with the twoside pieces having the same thickness and the top and 

bottom pieces having the same thickness. 

Because of the significant difference in the torsional rigidities 

of open and closed cross-sections, use of the box cross-section to 

represent an open section by omitting pieces will lead to gross errors 

in torsional response. Thin-walled open sections can be adequately 

modeled by making a recourse to the IE section to be described later. 

The x, Y, z axes of Fig. A-l are the x2, y2 z2 axes of Fig. 3-3. 

The geometric parameters of the box cross section are given by 

A = 2(dltl + d2t2) 

y,=o, zc=o 

I dltl 
(2 

d2t2 dltl d2t2 2 
Y= 

-+-+ d;, Iz = (6+2)dl (A-la, g> 

22 

I yz = 0, 
2dld2 

J=x---- d2 $+- 
1 t2 

where A is the cross-sectional area, y C and z C are co-ordinates of the 

centroid, I I 
Y' YZ 

and I Z are area moments of inertia, and J is the 

torsional constant. From symmetry the position of the shear center is 

at the centroid of the section, hence 

y,=o, zs=o (A-lh,f) 
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Fig. A-l Box Cross-Section Definition. 
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- 

Shear constants ky and kZ 

the maximum strain method 

for the cross-section are determined based on 

[33]. Thus 

ky =+) k - % ('z)centroid 
Y 

y centroid, z z 

Calculating the centroidal shear stresses for elastic bending the 

above formulas reduce to 

k 
Y 41z t1 ( 2 

A d1 dltl + d2t2) =-- , 

(A-2a,b) 

kZ 
d2 d2t2 

= & t (dltl + -y-l 
Y 2 

With these ky and kZ, the elastic shear deflection parameters c1 and c1 
Y Z 

of Eq. (3-34a,b) are 

12k EIZ 12kZEI 
a = 

Y GAL2 
, az= 

GAL2 
(A-2c,d) 

For monitoring inelastic material response, five points are spaced 
. 

equally along each of the &our walls of the section dividing the box 

element into 16 volume elements for the calculation of strain energy 

using Lobatto quadratures. For reporting stress results the normal 

stress, o, and the shear stress, r, are determined at the 16 points 

in Fig. A-2 and the stresses are subscripted by the point numbers 

shown in the figure to identify their location. 

For the box section, Eq. (3-44a) for the shear flow constant 

becomes 

40 = 

C. 
I( Ta+$) + 2 (ua-ub-ac+ad> 1 

(A-3) 
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Fig. A-2 Quadrature Points for the Box Cross-section. 
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where the sum is over the 16 volume elements. Based on the centroidal 

strains, the measurements of the effective bending shear strains are 

Av 
Y =-=- 

SY LS :G ('11 - '3) 
(A-4a,b) 

Aw S 
Y =-=- 

sz L :G (T15 - =7) 

All of the equations used to treat the frame member with box section 

are now available. 

A.2 The IE Cross-Section [15] 

In this section formulas for the IE cross-section are given. The 

IE cross-section is shown in Fig. A-3. It is made up of seven 

pieces--five flange pieces indicated by the subscripts 1, 2, 4, 6, 

7 and two web pieces indicated by the subscripts 3, 5. Each piece 

has a uniform thickness which may be different from the thickness of 

any other piece. Any combination of the five flange pieces may be 

omitted by specifying the width or thickness, or both, to be zero. 

The web sections, indicated by subscripts 3 and 5, cannot be omitted. 

752 x, Y, z axes of Fig. A-3 are the x2, y2, z2 axes of Fig. 3-3. 

The geometric parameters of the IE cross-section are given by 

7 
A= 1 A.= 

i=l ' 
f diti 

i=l 

Yc = & (Aldl - A2d2 - A4d4 + A6d6 - A7d7) 

A5 A3 Z C = i [(, + A6 + A7>d5 - (Al + A2 + z )d31 

I A3 2 A5 
Y 

= (Al + A2 + +d3 + (3 + A6 + A7)d; - AZ: 
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Fig. A-3 IE Cross-section Definition. 
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Iz = $ (Aid: + A2d; + A4dz + A6d; + A7d;) - AYE 

I 
YZ 

= $ [( - Aldl + A2d2)d3 - ( - A6d6 + A7d7)d5] - Ayczc 

7 
J = $ 1 A.? 

i=l l IL 
W5a,g) 

The elastic shear center is located as follows. For loading in 

the x-z plane the normal stress is given by 

IZZ CT= 
- 1 .Y 

' M 
II -I2 y 
YZ YZ 

where M 
Y 

is the bending.moment about the y-axis. From Eq. (3-24) the 

shear flow is 

vz 
q - 40 = - IS (Izz 

II -I2 0 
- Iyzy) tds 

YZ YZ 

where Vz is the resultant shear force. This result can be used 

to find the shear flow in each piece. 

From the definition of the shear center, we have 

dl d2 d6 d7 
vz (Y,-Y,) = J 

0 d3qlds1 o - j d3q2ds2 - / d5q6ds6 + / 
0 0 d5q7ds7 

where y S is the y co-ordinate of the shear center as shown in Fig. A-4. 

Substituting for the shear flow and integrating the following expression 

by y, results 

YS = Y, - 1 
2(IyIZ-I;& 

I- Iz 1 (zc+d3)d3 (d;tl-d;t2) 

- (zc-d5)d5(d;t6-d;t7) 1 (A-5h) 

+ IyzHY,- 5 dl)d3d;tl - (Y, + 5 d2)d3d;t2 
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Fig. A-4 Method for Determining Shear Stresses 'C . 
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- (Y, - $ d6)d5d;t6 + (y, + f d7)d5d;t71j 

A similar treatment for loading in the x-y plane gives an expression for 

the z co-ordinate of the shear center 

1 2 2 2 =z - 
S C 2(1 I - gz, 

{Iy[ (Y 
C 

- $ dl)d,d$l - (Y, + 7 d2)d3d2t2 

YZ 

- (Y, - f d6)d5d;t6 + (Y, + $ d7)d5d;t71 (A-51) 

kc -d5>d5 (dEt6-d;t7) I) 

The expressions for the shear flow in each piece can be used to deter- 

mine the shear constants ky and kZ required for the shear deflection 

calculations. Based on the maximum strain method formulas for these 

constants are 

k = $ ('y)centroid' 
y Y 

k2 = $ ('z)centroid' 
Z 

Calculation of the shear stress at the centroid based on elastic bend- 

ing in the y-z plane and substitution into the above expression yields 

for y, positive: 

k A dl-yc 
Y' 

(IyIZ-I;z)(d3+dg) 
IPy(T 1 + Iyz(d3+zcl (d5 s --z 1 Gil-y,) 

d6-Yc 
+ IIy+-' - Iyz (d5-zc> I (d6-y,) (d3+zs) 1 

(A-6a) 

and for y, negative 

k = A d2+yc 
Y 2 

(IyIz-Iyz) (d3+d5) 
{[1,(---i-) - Iyz (d3+zc) I (d2+yc) (d5-zs) 

+ IIy( 
d7+yc 
-1 + Iyz (d5-zc> 3 (d3+zs> (d7+yc) 1 2 

(A-6b) 
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Fig. A-5 Quadrature Points for IE Cross-Section. 
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The shear stress at the shear center is used to measure the effective cen- 

troidal stress, as shown in Fig. A-4 for the case of positive y,. 

A similar treatment for loading in the x-z plane gives the follow- 

ing expressions for the shear constant kZ: 

zc positive: 

kZ = 
A 

(IyIz - 1:z)t5 
{Iz [A6+A7 + + t5 (d5-zC> 1 (d5-zc> 

d6 d7 
+ IyzP6$- - Y,> + A7+ + Y,> + t5(d5-zc)Y,l~ 

Z 
C 

negative: 

kZ = 

+ 

With 

a and c1 
Y Z 

a = 
Y 

Equations 

A 

(IyIz 

{Iz[Al+A2 + + t3(d3+zc) l(d3+zc) 
- 1:Z)t3 

dl 
Iyz[A1$- - Y,) 

d3 - A2$- + Y,) - t3(d3+zc)y,l) (A-6~) 

ky and kZ determined, the elastic shear deflection parameters 

of Eqs. (3-34a,b) can be calculated. These are 

12k EIZ 12kZEI 

GAL2 
, a = Z GAL2 

(A-6d) 

(A-5) through (A-6) represent the principal cross-section and 

member parameters used in the analysis of the IE section. They are 

based upon geometry and the elastic deflection responses. 

For monitoring inelastic material response, stress reference points 

are selected so that the end and mid-points of each of the seven cross- 

section pieces are represented. This selection divides the IE element 

into 14 volume elements for the calculation of strain energy through the 

use of Lobatto quadratures. The normal stress, o is calculated at each 

reference point as defined in Fig. A-5. The shear stress, T, is deter- 

mined only at selected reference points as shown in Fig. A-5. The shear 
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stress at the free ends of the flanges is zero. 

It is evident that the shear flow theory does not contain torsional 

components and hence cannot describe torsion of an open cross-section 

like the IE cross-section. Thus, the torsional response is assumed to 

be elastic and Eq. (6-13) i s used to account for the torsional strain 

energy. 

For treating inelastic bending shear deformations, measurements of 

the effective shear strains are required. Based on the maximum strain 

method the centroidal shear stresses may be used to estimate effective 

shear strains. However, in general the centroidal stresses are a 

result of bending about both the y and z axes; hence it is necessary to 

separate the centroidal stresses into components associated with bending 

about the y-axis and with bending about the z-axis. For the box, tube 

and elliptical sections this is done easily based on geometric symmetry 

of the sections and the results are obtained in terms of centroidal 

stresses. For the non-symmetric IE section the analysis is more com- 

plex. Therefore a slightly different approach is taken. From Eqs. (3- 

29a,b), the effective strains are 

V V 
Y =k-y- y =,k ?i 

SY yAG' sz z AG 

In these expressions, the parameters, Vy and Vz are the force resultants 

of the shear stresses in the y and z directions. The forces V and Vz 
Y 

are determined by integrating the shear stresses over the cross-section. 

Assumption of a linear variation of shear stress between the stress 

reference points, yields the following results: 

Av S r2 T4 
Y T9 E--Z 

SY L 1 + y-'dltl + CT, + y-‘d2t2 + kc8 + +d4t4 

+ (53 
r14 '16 + +d6t6 + (-cl5 + +d7t73, (A-7a) 
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Y 
Aw k -cc5 S =7 r10 -%2 

sz = - = & 1'~ + T6 +$d3t3 + (2 + rll ++d5t5](A-7b) L 

The shear constants ky and kZ in the above equations are those deter- 

mined on the basis of elastic bending, i.e.,as given by Eqs. (A-6). 

All of the equations required for the analysis of a frame member 

with IE cross-section are now available. The procedure for evaluating 

the strain energy is the same as that described for the box section. 

A.3 The Circular Tube Cross-Section [15] 

In this section formulas for the circular tube cross-section are 

given. The circular tube cross-section is described by the mean dia- 

meter, D, and the constant wall thickness, t, as shown in Fig. A-6. The 

x9 YI z axes of Fig. A-6 are the x2, y2, z2 axes of Fig. 3-2. 

The geometric parameters of the circular tube cross-section are 

given by 

A=xDt, y,= zc= 0 

I AD2 
Y= 

Iz=7, I yz = 0 (A-8a,b) 

2 
J=.21 =+ 

Y 

where A is the cross-sectional area, y and z C c are the co-ordinates of 

the centroid; I 
Y' 

Iz and I are area moments of inertia and J is the 
YZ 

torsional constant. As a result of symmetry the shear center coincides 

with the centroid of the section, hence 

y, = zs = 0 (A-8c,d) 

The shear constants ky and kZ determined on the basis of the maximum 

strain method are 
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"y = k ('y)centroid' kz = & ('z)centroid 
Y Z 

Calculating the centroidal shear stresses for elastic bending and 

substituting into the above formulas gives 

k = 2 and k = 2 
Y z (A-9a,b) 

With these ky and kZ known, the elastic shear deflection parameters 

oy and oz of Eqs. (3-25) are 

12k EIZ 12kZEI 
a = 

Y GAL2 
, az= 

GAL2 
(A-9c,d) 

Equations (A-8) and (A-9) constitute the principal cross-section and 

member parameters used,in the analysis of the circular tube cross- 

section based on elastic deflection response. 

For monitoring inelastic material response, 16 stress reference 

points spaced equally around the circumference as shown in Fig. A-6 are 

used. These points divide the circular tube section into 16 equal 

volume elements which are used for the calculation of the strain energy 

by Lobatto quadratures. These 16 reference points are used for report- 

ing the normal stress, U, and the shear stress, T, which are subscripted 

using these reference numbers as shown in Fig. A-6. 

Some of the general expressions developed for the inelastic ma- 

terial response simplify considerably for the circular tube section. 

Equation (3-40) for the shear flow may be simplified to 

90 
= t(EYx -& (A-10) 

where the sum is over the 16 reference points at the p-end of the 

element. Based on centroidal shear strain, measurements of the effec- 

tive shear strains caused by bending are 
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Fig. A-7 Fig. A-7 Elliptical Tube Cross-Section Details. Elliptical Tube Cross-Section Details. 
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Av Aw 
Y =-=- 

SY LS :G (= 13-T5L Y,, = -y = & (yTg) (A-11) 

All of the equations used to treat the frame member with circular tube 

cross-section are now available. 

A.4 The Elliptical Tube Cross-Section 

In this section formulas for the elliptical tube cross-section are 

given. The elliptical tube cross-section is described by the two 

diameters 2a and 2b along the major and minor axis respectively and the 

constant wall thickness, t, as shown in Fig. A-7. The x, y, z axes of 

Fig. A-7 are the x 2' y2' s2 axes of Fig. 3-2. 

The geometric parameters of the elliptical tube cross-section are 

A= T(a+b)t, y, = zc = 0 

I 
Y 

= r [(3b+a)a- + (3a+b) ?I (A-12a,f) 

Iz = F [(3a+b)b2 + (3b+a) $1 

I yz = 0 

where 

e= - 
a and E(e,n/2) is the elliptic integral 

of the second kind. 

The shear center coincides with the center as a consequence of the 

symmetry of the cross-section and hence 

y, = fs = 0 (A-Us) 

The shear constants ky and kZ determined on the basis of the maximum 

strain method are 
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k = & (Ty)centroid 
y Y , k~ = % ('z)centroid z 

Calculating the centroidal shear stresses for elastic bending and 

substituting into the above formulas gives 

k aA -___ bA2 
Y =zzp kZ - 3nIyt (A-13,a,b) 

With these ky and kZ known, the elastic shear deflection parameters 

aY 
and a z of Eqs. (3-25) are 

12k EIZ 12kZEI 
a = , az= (A-14,a,b) 

Y GAL2 GAL2 

Equations (A-13) through (A-14) constitute the principal cross-section 

and member parameters used in the analysis of the elliptical tube 

cross-section based on elastic deflection response. 

For monitoring inelastic material response, 16 stress reference 

points spaced equally around the circumference as shown in Fig. A-7 are 

used. These points divide the elliptical tube cross-section into 16 

equal volume elements which are used for the calculation of the strain 

energy by Lobatto quadratures. These 16 reference points are used for 

reporting the normal stress, CJ, and the shear stress, T, which are 

subscripted using these reference numbers as shown in Fig. A-7. 

Some of the general expressions developed for the. inelastic ma- 

terial response simplify for the elliptical tube cross-section also. 

Equation (3-40) for the shear flow may be simplified to 

Y 16 
t[2Tab f - $ 1 ~~1 

i=l 
q. = 4aE(e) (A-15) 

Where E(e) is the elliptical integral of the second kind and where the 

sum in Eq. (A-15) is over the 16 reference points at the p-end of the 
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element. Based on the centroidal shear strain, measurements of the 

effective shear strains caused by bending are 

Av 
Y 

sl =- =- 
SY L 26 (' 13-T15L Y,, = 3 = & (y-Tg> (~-16) 

All of the equations used to treat the frame member with elliptical tube 

cross-section are now available. 

A.5 The Solid Rectangular Cross-Section [37] 

This .section provides formulas for the solid rectangular cross- 

section which is described by its two dimensions D 1 and D 2 as shown in 

Fig. A-8. The x, Y, z axes of Fig. A-8 are the x2, y2, z2 axes of Fig. 

3-2. 

The geometric parameters of the rectangular cross-section are 

A = DlD2, y, = zc = 0 

3 3 

I DlD2 DlD2 
Y =--yy--, Iz=y, Iyz=O (A-17a,c) 

J = 5 (2a3)(2b)(l - 192a 
Tr5 b 

Where A is the cross-sectional area, y, and zc the co-ordinates of the 

centroid, I 
Y' 

Iz and I 
YZ 

are the are moments of inertia, J is the 

torsional rigidity constant and b is the larger and a is the shorter of 

the two dimensions D 1 and D2 [361. As a result of symmetry the shear 

center coincides with the centroid of the section, hence 

y, = zs = 0 (A-17d) 

The shear constants ky and kZ determined on the basis of the maximum 

strain are 

ky = $ ('y)centroid' k~ = $ (Tz)centroid 
Y Z 
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FIGURE A-8, SOLID RECTANGULAR CROSS-SECTION DETAILS. 
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Calculating the centroidal shear stresses for elastic bending and 

substituting into the above formulas gives 

k 
Y 

=kz=$ (A-17e) 

With these ky and kZ known, the elastic shear deflection parameters 

a 
Y 

and az of Eqs. (3-25) are 

12k EI y z 12kZEI 
a = 

Y GAL2 
, az= 

GAL2 
(A-lSa,b) 

Equations (A-17) and (A-18) constitute the principal cross-section and 

member parameters used in the analysis of the solid rectangular cross- 

section based elastic response. 

For monitoring inelastic material response, 2x2 Gauss quadrature 

points for each of the four subrectangles and 25 stress reference points 

spaced equally around the periphery as shown in Fig. A-8 are used. The 

stresses at the stress reference points are calculated by simple linear 

extrapolation of the stresses at the Gauss points. 
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